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ABSTRACT- This study introduces an innovative 

methodology for the efficient conceptual design of 

complex, multidisciplinary systems that involve 

computationally intensive analyses and a vast array of 

design variables. A novel nearly-orthogonal sampling 

strategy with superior space-filling characteristics is 
employed to extract maximal insights into system 

behaviour using a significantly reduced number of trial 

designs. The sampled dataset serves as input for a 

metamodel constructed using advanced artificial neural 

networks, augmented by Transformer Networks to enhance 

the metamodel’s capacity for capturing intricate 

dependencies and complex interactions within the data. 

Furthermore, a stage-wise interconnection of discrete 

neural networks is proposed for trajectory metamodeling, 

effectively mitigating the dimensionality challenges 

inherent in traditional neural architectures. The 
optimization process integrates a hybrid approach, 

leveraging a Genetic Algorithm for global optimization in 

tandem with Sequential Quadratic Programming for 

localized refinement utilizing exact disciplinary analyses. 

The efficacy of the proposed methodology is demonstrated 

through its application to the conceptual design 

optimization of a multistage solid-fuelled space launch 

vehicle. The results reveal exceptional accuracy in 

approximating highly nonlinear functions, a substantial 

reduction in overall computational time, and significant 

minimization of the reliance on exhaustive disciplinary 

analyses, underscoring the transformative potential of this 
approach. 

KEYWORDS- Transformer Network, Space launch 

vehicle, Neural Network, Nearly-orthogonal sampling, 

Trajectory planning.  

I. INTRODUCTION 

Design and analysis are intrinsically interdependent 

processes. The design paradigm must facilitate the desired 

analytical rigor while deriving comprehensive insights from 

a limited set of simulation iterations [1-3]. Conducting an 

exhaustive experimental design over highly complex 

simulation models encompassing multidimensional input 

spaces is computationally prohibitive. Despite the 

exponential advancements in computational power, the 

exorbitant cost associated with high-fidelity engineering 

analyses and simulations often impedes their applicability 
in critical areas such as design optimization and reliability 

analysis. Thus, a paradigm shift towards a more rapid, 

intelligent design optimization framework becomes 

imperative to circumvent these challenges. 

Statistical approximation methodologies, including Design 

of Experiments (DoE) and Response Surface Methodology 

(RSM), have long been utilized to mitigate the 

computational burden of complex systems analyses. 

However, these conventional methods often lack the 

capacity to effectively handle intricate nonlinearities and 

high-dimensional dependencies. In the realm of design 

optimization for complex aerospace systems, such as 
multistage space launch vehicles, the integration of 

advanced neural network architectures plays a pivotal role 

in enhancing computational efficiency and robustness. [4] 

demonstrated the efficacy of leveraging neural network 

approximations within Deep MPC to handle high-

dimensional control problems in robotic manipulators, 

providing valuable insights into robust and adaptive 

planning under model uncertainties. Inspired by this work, 

the proposed transformer-based neural network metamodel 

leverages similar principles of neural network-driven 

approximations to address the challenges of nearly 
orthogonal sampling and efficient trajectory metamodeling 

in conceptual design optimization. This adaptation not only 

ensures computational efficiency but also enables the 

metamodel to capture intricate dependencies across design 

variables, aligning with the robust methodologies. To 

address these limitations, this work leverages Transformer 

Networks—a state-of-the-art deep learning architecture 
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known for its unparalleled capability in modeling long-

range dependencies and capturing complex 

interrelationships within large datasets [5]. By integrating 

Transformer Networks into the conceptual design 

framework, this study aims to establish a robust, scalable 
approach to optimizing multidisciplinary systems [6]. 

The proposed methodology encompasses a nearly-

orthogonal sampling strategy with enhanced space-filling 

properties, facilitating the extraction of maximal 

information from the design space. The integration of 

advanced robotics and machine learning methodologies has 

significantly transformed the landscape of aerospace 

systems, particularly in addressing complex and dynamic 

challenges. [7] proposed an innovative framework for 

autonomous multi-robot servicing to extend spacecraft 

operations, demonstrating the efficacy of decentralized 
adaptive control in high-uncertainty environments. 

Building on this foundational work, the proposed 

transformer-based neural network metamodel draws 

inspiration from similar principles of adaptability and 

scalability to optimize the conceptual design of multistage 

space launch vehicles. By employing nearly orthogonal 

sampling techniques and robust neural network 

architectures, this approach aligns with the vision of 

intelligent aerospace systems capable of efficiently 

addressing high-dimensional design and operational 

challenges. The sampled data serves as input for a 
metamodel based on Transformer-augmented neural 

networks, which excel in approximating highly nonlinear, 

multidimensional functions [8]. To further combat the curse 

of dimensionality, a stage-wise interconnection of these 

networks is proposed for trajectory metamodeling, ensuring 

computational efficiency without compromising precision. 

 

 

Figure 1: Conceptual Design of Multistage Space Launch 

Vehicles 

The application of this methodology is demonstrated in the 

conceptual design optimization of a solid-fuelled space 

launch vehicle (SLV) tailored for low Earth orbit (LEO) 

missions. [9] proposed an adaptive robotic control 

framework for detumbling non-rigid satellites, 

demonstrating the importance of real-time adaptability in 

addressing uncertainties and intricate dynamic behaviours. 

Inspired by their emphasis on adaptive modelling, the 

proposed transformer-based neural network metamodel 
adopts a similar philosophy to optimize the conceptual 

design of multistage space launch vehicles. The framework 

integrates a hybrid optimization strategy—employing 

Genetic Algorithms (GA) for global optimization and 

Sequential Quadratic Programming (SQP) for localized 

refinement [10]. This hybrid approach, augmented by the 

Transformer-based metamodel, ensures rapid convergence 

to an optimal solution, significantly reducing computational 

time and reliance on exhaustive disciplinary analyses. 

Conceptual design serves as the cornerstone of the overall 

design process, locking in nearly 80% of a vehicle's 
lifecycle cost. The decisions made at this stage exert a 

profound influence on the final product's quality and cost-

effectiveness, emphasizing the need for robust, 

interdisciplinary collaboration. The proposed methodology 

effectively integrates diverse analytical domains, including 

aerodynamics, structural dynamics, propulsion systems, 

trajectory optimization, and thermal analysis, into a 

cohesive framework. By leveraging advanced 

computational intelligence, this study underscores the 

transformative potential of integrating Transformer 

Networks into the design optimization of complex 
aerospace systems. 

II. METHODOLOGY 

A. Nearly-orthogonal sampling 

Design of Experiments (DoE) provides a systematic 

approach for exploring the trade space of the design 

envelope efficiently, eliminating the need for excessive and 

redundant simulation cases. These tools enable the designer 

to achieve a comprehensive understanding of the overall 

design through minimal computational effort. Typically, 

Response Surface Methodology (RSM) is employed to 

construct simplified surrogate models of the design space, 

enabling optimization algorithms to rapidly converge on 

optimal solutions. However, RSM is often inadequate for 

highly complex systems with a vast number of design 

variables due to its limited scalability and approximation 
capacity. 

An orthogonal array (OA), a fractional factorial matrix, has 

been widely utilized to ensure a balanced exploration of the 

interaction effects among design variables. Orthogonal 

designs maintain independence between regression model 

coefficients, thereby enhancing analytical accuracy. 

Recently, advancements in multidisciplinary optimization 

have introduced methodologies that integrate the Taguchi 

method, fuzzy logic, and neural networks for 

comprehensive system analysis. Such approaches are 

instrumental in addressing complex aerospace design 
problems, including propulsion system performance, 

weight estimation, and emission analysis. However, these 

conventional methodologies face limitations in capturing 

intricate nonlinear interactions and high-dimensional 

correlations within the design space. 

To overcome these challenges, this study introduces a 

Transformer Network-based metamodeling framework. 

Transformers, renowned for their superior ability to capture 

long-range dependencies and complex relationships, are 

employed to construct a metamodel capable of 

approximating highly nonlinear, multidimensional 

functions with exceptional accuracy. By integrating 
Transformer Networks with orthogonal sampling, the 

proposed methodology ensures a more robust exploration 

of the design space while maintaining computational 

efficiency. 

A superior space-filling design is characterized by the 

uniform scattering of design points across the experimental 

region, minimizing voided or un-sampled areas. Latin 

Hypercube Sampling (LHS), a variant of quota sampling, 
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offers an effective solution for improving space-filling 

properties. Although Taguchi designs exhibit compactness, 

their poor space-filling capabilities limit their applicability 

to complex systems like SLV design. Conversely, Latin 

Hypercube designs provide better space-filling 
characteristics but remain computationally intensive for 

high-dimensional problems. 

The incorporation of Transformer Networks into the space-

filling sampling process significantly mitigates these 

limitations. The Transformers not only enhance the 

representational capacity of the metamodel but also 

optimize the distribution of design points across the space. 

This ensures a comprehensive and efficient exploration of 

the design space, paving the way for more accurate and 

scalable solutions to the multidisciplinary challenges of 

SLV conceptual design based on [11] we can get 
 

Q2 = (n)𝑘 −
1

𝑛
∑  𝑛
𝑑=1 ∏  𝑘

𝑖=1 (5 − 𝑢𝑑𝑖
2 )     (1) 

 

The structural mass encompasses a comprehensive 

aggregation of components, including the mass of the motor 

cylinder (𝑚cyi), motor dome ends, forward and aft skirts 

(𝑚cll11,𝑚cll22i),, aft attachment (𝑚in,cl1i,𝑚in,c2i), fore and 

aft insulation liners (𝑚in,cl1i,𝑚in,c2i) , (𝑚noz ,ini) , and 

cylindrical section insulation liner Additional elements 

include the nozzle expansion cone, nozzle spherical head 

(𝑚noz,shi) , nozzle insulation, and ignitor (𝑚igi) . 

Furthermore, the structural mass accounts for the thrust 

vector control mechanism (𝑚TVCi), cabling (𝑚cabi ), and 

attachment components (𝑚api ) as- 
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(2)                                                    

Here, 𝑓 denotes the factor of safety, while 𝑓𝑝  represents the 

ratio of peak pressure to working chamber pressure. The 

parameter 𝜂𝑣𝑖   corresponds to the volumetric loading 

fraction [12], and 𝜎 is the ultimate tensile strength of the 

material. ρ signifies the material density, and δ denotes the 

material thickness. 𝜃2 is the aft dome half-included angle, 

and 𝑆 represents the submerged coefficient of the nozzle. 

The lengths of the forward and aft skirts are indicated by 

𝑙𝑞1 and 𝑙𝑞2 , respectively. 

The parameter 𝑅𝑎   refers to the rate of ablation of the 

insulation material, while 𝜖𝑖𝑛  is the heat transfer coefficient 

of the insulation material [13-15]. The specific heat 

capacities of the insulation and cylindrical section are 

represented by 𝑐𝑖𝑛   and 𝑐𝑐𝑦 , respectively. The heat transfer 

coefficient from the combustion gas to the insulation is 

expressed as 𝛼𝑔𝑖  .Additionally, 𝜃𝑃 =
(𝑇𝑔−𝑇𝑐𝑦)

(𝑇𝑔−𝑇)
 defines the 

temperature ratio parameter, where 𝑇𝑔  denotes the 

temperature of the combustion gas, and 𝑇𝑐𝑦 is the allowable 

temperature of the motor. 

B. Global Optimization using Transfomer Network 

To derive a polynomial formulation of the Optimal Power 

Flow (OPF) problem, the procedure is carried out in three 

systematic steps. Initially, the problem is expressed in the 

domain of complex numbers. Subsequently, this 

formulation is translated into a real-number representation. 

Finally, the real-number formulation is utilized to establish 

a polynomial representation of the OPF. 

Let 𝐚𝐻 and 𝐀𝐻 denote the conjugate transpose of a complex 

vector a and a complex matrix A, respectively. From [16], 

it can be inferred that there exist finite index sets ℐ and 𝒥, 

Hermitian matrices (𝐀𝑘)𝑘∈𝒢 of size nnn, complex matrices 

(𝐁𝑖)𝑖∈ℐand (𝐂𝑖)𝑖∈𝒥 of size n, and complex scalars (𝑏𝑖)𝑖∈ℐ 
and (𝑏𝑖)𝑖∈ℐ, such that the OPF can be expressed in the 

following form: 

 

𝑚𝑖𝑛
𝐯∈ℂ𝑛

 ∑  𝑘∈𝒢 𝑐𝑘2(𝐯
H𝐴𝑘𝐯)

2 + 𝑐𝑘1𝐯
H𝐴𝑘𝐯 + 𝑐𝑘0                  (3) 

 

subject to                    

 

∀𝑖 ∈ ℐ,     𝐯H𝐵𝑖𝐯 ⩽ 𝑏𝑖 ,

∀𝑖 ∈ 𝒥,     |𝐯H𝐶𝑖𝐯| ⩽ 𝑐𝑖 .
               (4) 

The formulations outlined in above equations are not 

employed further in this work due to the existence of 

infinitely many global solutions. Specifically, the 

formulation from which these subsequent formulations are 

derived, exhibits invariance under the transformation of 

variables 𝐯𝑒𝑗𝜃, where 𝜃 ∈ ℝ. Such solutions complicate the 

convergence process, as optimization problems with 

multiple global solutions are inherently more difficult to 

solve compared to those with a unique solution [17-20]. To 

address this issue, we adopt a specific approach to eliminate 

the invariance by arbitrarily fixing the aerospace device 

energy phase at bus nnn to zero. This constraint is 

implemented while ensuring that the minimum gas 

magnitude condition 𝑣𝑛
𝑚𝑖𝑛 ≥ 0 is satisfied. This adjustment 

can be operationalized by substituting the voltage constraint 

in [21] with the updated condition [22]. This approach 

ensures the optimization problem transitions from having a 

non-isolated solution set to a more tractable, uniquely 

defined solution space, facilitating the application of the 

moment-sum-of-squares  methodology as: 

 

�̂�𝑖𝑗
ℓ+1 = 𝑂𝑒

ℓ ∥𝑘=1
𝐻 (�̂�𝑖𝑗

𝑘,ℓ)                     (5) 

 

where 𝑄𝑘,ℓ, 𝐾𝑘,ℓ, 𝑉𝑘,ℓ, 𝐸𝑘,ℓ denotes the number of attention 

head. For numerical stability, the outputs resulting from the 

exponentiation of terms within the soft-max function are 

clamped to a bounded range of [0, N]. This ensures that the 
values remain within a manageable scale, mitigating issues 

associated with extreme values that could lead to instability 

during computations [23-27]. The processed outputs, ℎ̂𝑖
ℓ+1 

and �̂�𝑖𝑗
ℓ+1, are subsequently fed into separate Feed Forward 

Networks (FFNs). These networks are architected with 

residual connections to preserve gradient flow and are 

flanked by normalization layers to ensure consistent scaling 

and improved convergence. The overall operation can be 

described as follows: 

𝑊𝑖𝑗
ℓ+1 = (�̂̂�𝑖𝑗

ℓ+1 + �̂̂�𝑖𝑗
ℓ+1)       (6)  
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III. EXPERIMENT RESULTS 

The efficacy of the trained NNs was rigorously evaluated 
through 1000 random exact analyses, with results depicted 

in Fig. 2. The evaluations demonstrate the exceptional 

approximation capabilities of the proposed neural networks. 

Notably, a slightly higher dispersion in the final velocity 

indicates that velocity, as a state variable, is the most 

sensitive parameter. This nonlinearity presents challenges 

for accurate approximation with limited sample sizes. 

However, the proposed stage-wise interconnection of NNs 

significantly reduces velocity dispersion compared to 

standalone NN [28]. 

The importance of the proposed Nearly Orthogonal Latin 

Hypercube (NOLH) sampling for NN training is 
highlighted by comparing it with conventional Latin 

Hypercube Sampling (LHS). For this comparison, 2000 

samples generated using standard LHS were utilized to train 

a NN, focusing on the first-stage velocity. Testing with 

1000 random samples revealed that NOLH outperformed 

LHS in terms of approximation accuracy. The comparative 

results, as shown in Fig. 3, underscores the superiority of 
the proposed sampling approach. 

For optimization, the PyTorch, incorporating real-coded 

GA with standard operators such as fitness scaling, 

tournament selection, crossover, and mutation, was 

employed. The population size was set to 200, with a 

maximum of 100 generations. Optimization was conducted 

using exact analyses and subsequently compared with 

metamodel-driven optimization. Tables 3 and 4 present the 

comparative number of exact function evaluations, 

demonstrating that trajectory metamodels drastically reduce 

the computational burden while maintaining optimal 

solution accuracy. 

 

 

Figure 2: Approximation capability of Transformer Neural Network 
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Figure 3:  Optimal trajectory for different parameters 

IV. CONCLUSION 

This study introduces a transformative approach to 

conceptual design optimization for multistage space launch 

vehicles (SLVs) by leveraging space-filling techniques and 

nearly-orthogonal Latin hypercube designs for generating 

training data. The incorporation of Transformer Networks, 

with their superior ability to model intricate dependencies 
and nonlinear interactions, has resulted in highly efficient 

and accurate metamodels. These metamodels were utilized 

to approximate complex trajectory analyses, significantly 

reducing computational cost while maintaining high 

fidelity. The optimization framework integrates Genetic 

Algorithms (GA) to efficiently evolve designs toward 

achieving near-minimal launch mass of SLVs [29-33]. By 

replacing exhaustive trajectory simulations with 

Transformer-driven neural network metamodels, the 

methodology accelerates the global search for optimal 

solutions. Sequential Quadratic Programming (SQP) 
further refines the design by determining the local 

minimum, ensuring convergence to an optimal solution 

with precision. 

The resulting conceptual design is inherently 

multidisciplinary, encompassing major dimensions, 

configurations of SLVs, star grain profile optimizations, 

and propulsion parameters. The inclusion of Transformer 

Networks enables the design methodology to effectively 

address the curse of dimensionality associated with 

complex systems involving a vast array of design variables 

[34]. This innovation underscores the robustness and 

scalability of the proposed framework, establishing it as a 

rapid and efficient tool for optimizing intricate aerospace 

systems. 

In summary, the proposed methodology demonstrates a 

paradigm shift in design optimization by integrating 

cutting-edge machine learning architectures with advanced 

sampling techniques, offering a versatile and 

computationally efficient solution for conceptualizing 
complex aerospace systems. 
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