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ABSTRACT- Gun and weapon détection plays a crucial role 

in security, surveillance, and law enforcement. This study 

conducts a comprehensive comparison of all available YOLO 

(You Only Look Once) models for their effectiveness in 

weapon detection. We train YOLOv1, YOLOv2, YOLOv3, 

YOLOv4, YOLOv5, YOLOv6, YOLOv7, and YOLOv8 on a 

custom dataset of 16,000 images containing guns, knives, and 

heavy weapons. Each model is evaluated on a validation set of 

1,400 images, with mAP (mean average precision) as the 
primary performance metric. This extensive comparative 

analysis identifies the best performing YOLO variant for gun 

and weapon detection, providing valuable insights into the 

strengths and weaknesses of each model for this specific task. 

KEYWORDS-Weapon Detection; YOLO models; Security; 

Deep Learning; Learning Rate 

I. INTRODUCTION 

The field of object detection has witnessed remarkable 

progress in recent years, with advancements in algorithms and 
models leading to astonishing results. From the early days of 

detecting basic objects like cats and dogs to the current 

capabilities of identifying high-speed cars and traffic in 

videos, the evolution has been truly remarkable. At the 

forefront of this progress stands the YOLO (You Only Look 

Once) family of models, with YOLOv8 representing the latest 

state-of-the-art. This model boasts significant improvements 

in both accuracy and efficiency, making it a powerful tool for 

various object detection tasks. 

Weapon detection remains a crucial aspect of security, 

surveillance, and law enforcement. Traditional methods often 

fall short in their effectiveness, highlighting the need  
for more reliable and efficient solutions. Deep learning-based 

object detection models, like YOLOv8, offer a  promising 

avenue for overcoming these limitations. Gun and weapon 

detection pose a unique challenge due to the diverse range of 

weapon types and their often-complex appearances. However, 

deep learning models have achieved significant success in this 

domain, demonstrating their potential to revolutionize weapon 

detection capabilities. 

This research delves into the effectiveness of YOLO variants 

for gun and weapon detection. We conduct a comprehensive 

comparative study, analysing the performance of all available 

YOLO models (YOLOv1, YOLOv2, YOLOv3, YOLOv4, 

YOLOv5, YOLOv6, YOLOv7, and YOLOv8) on a custom 

dataset of 16,000 images encompassing various guns, knives, 

and heavy weapons. By evaluating each model's performance 

using the mean average precision (mAP) metric, we aim to 

identify the best performing YOLO variant for this specific 
task. Furthermore, this study provides valuable insights into 

the relative strengths and weaknesses of each model in the 

context of gun and weapon detection, contributing to the 

ongoing development and optimization of object detection 

models for critical security applications. 

This research builds upon the foundation of previous 

advancements in object detection and leverages the latest 

advancements in the YOLO model architecture to explore its 

potential for enhancing weapon detection capabilities, 

ultimately contributing to improved public safety. 

The present article is structured as:  

 Section I is Introduction,  

 Section II is The literature review. 

 Section III Illustrates the methodology. 

 Section IV Comparative study of variants. 

 Section V Describes results and discussion.  

 Section VI Summarizes the conclusions and gives ideas for 

future work. 

II.  LITERATURE REVIEW 

Object detection performance is measured in both detection 

accuracy and inference time. The detection accuracy in two 

stage detectors is better than single stage detectors. In 2015, 

the real-time object detection system YOLO was published, 

and it rapidly grew its iterations, with the newest release, 

YOLOv8 in January 2023 [1]. The limitations of traditional 
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techniques are apparent when handling complex scenarios 

involving various factors, such as diverse lighting, weather 

conditions, and occlusions. In recent years, the accuracy of 

object detection methods has undergone significant 

advancements, and the field of Deep Learning has been the 

primary driving force behind this transformation [2]. the 
review highlights key architectural innovations introduced in 

each variant, shedding light on the incremental refinements. 

The review includes benchmarked performance metrics, 

offering a quantitative measure of each variant’s capabilities 

[3]. Deep learning methods like You Only Look Once 

(YOLO) and MobileNet have recently significantly aided real-

time biometric recognition [4]. Quantitatively, YOLOv5 

models generally outperform YOLOv8, with the YOLOv5s 

variant achieving the highest scores across all metrics. 

However, visual assessments reveal that YOLOv8 models 

exhibit similar, and in some cases superior capabilities [5]. We 

observed that while models like YOLOv8 show improvements 
in detecting specific actions like steering wheel and IVI 

operations, challenges remain in accurately identifying other 

crucial activities such as cell phone usage and general hand 

movements [6]. YOLO and its different variants that detect 

and track perception of people. This research uses detection 

and tracking the differently abled people with paralysis, limb 

deficiency Amelia, or amputee [7]. Intra-model analysis is 

conducted for each of the five YOLO versions, optimizing 

parameters such as the optimizer, batch size, and learning rate 

based on sensitivity and training time. YOLOv3, YOLOv4, 

and YOLOv7 demonstrate exceptional sensitivity, reaching 
100%. Comparative analysis against state-of-the-art models 

highlights their superiority. YOLOv7, utilizing the SGD 

optimizer, a batch size of 64, and a learning rate of 0.01, 

achieves outstanding overall performance [8]. YOLO models 

outperform the commonly used two-stage detection algorithm, 

Faster R-CNN, in fracture detection. Additionally, compound-

scaled variants of each YOLO model were compared, with 

YOLOv8 m demonstrating the highest fracture detection 

sensitivity [9]. There are many techniques used to identify and 

locate objects in images and videos, but YOLO is the best 

solution for them. The YOLO algorithm performs generalized 
representation of objects more efficiently without loss of 

accuracy than other object detection models [10]. Computer 

Vision is a field of study that helps to develop techniques to 

identify images and displays. It has various features like image 

recognition, object detection and image creation, etc. Object 

detection is used for face detection, vehicle detection, web 

images, and safety systems. Its algorithms are Region-based 

Convolutional Neural Networks (RCNN), Faster-RCNN and 

You Only Look Once Method (YOLO) that have shown state-

of-the-art performance. Of these, YOLO is better in speed 

compared to accuracy. It has efficient object detection without 

compromising on performance [11]. Transfer learning has 
emerged as one of the go-to methods to adapt models well on 

a small data set. Deep learning models have outperformed the 

traditional machine learning models, especially in the 

computer vision field [12]. YOLOv7 exhibits comparatively 

better performance as it dynamically learns the class labels 

through its soft labelling mechanism. [13]. object detectors are 

classified into two categories viz. two stage and single stage 

object detectors. Two stage detectors mainly focus on 

selective region proposals strategy via complex architecture; 

however, single stage detectors focus on all the spatial region 

proposals for the possible detection of objects via relatively 

simpler architecture in one shot [14]. YOLOv5 emerged 

within this paradigm as the standards of time efficiency. 

YOLOv8 is distinguished as the best possible level of 
performance in contrast, earning a remarkable mean Average 

Precision [15]. The yolov4 model is higher than the yolov3 

model in terms of mAP values, but slightly lower in terms of 

speed, while the yolov5 series model is better than the yolov3 

and yolov4 models both in terms of mAP values and speed 

[16]. For an object detection system to run in real-time, it is 

vital to minimize the computational costs while maintaining 

acceptably high accuracy. In a Convolutional Neural Network 

(CNN) there is a direct correlation between the accuracy and 

the computational cost incurred by increasing the number of 

layers [17]. The YOLO (You Only Look Once) technique has 

emerged as a prominent technique for various object detection 
tasks owing to its impressive balance between speed and 

precision [18]. The YOLOv5 model had high precision, recall, 

F1-score, and mean average precision (mAP) for training with 

both the original dataset and the proposed augmentation 

dataset. While the YOLOv8s model had the highest precision, 

recall, F1-score, and mAP only training with the proposed 

augmentation [19]. The success of these YOLO models is 

often attributed to their use of guidance techniques, such as 

expertly tailored deeper backbone and meticulously crafted 

detector head, which provides effective mechanisms to 

tradeoff between accuracy and efficiency [20]. 

III. METHODOLOGY 

This research delves into the potential of various YOLO 

variants for gun and weapon detection. We conduct a 

comprehensive comparative study by training and evaluating 

all available YOLO models (YOLOv1, YOLOv2, YOLOv3, 

YOLOv4, YOLOv5, YOLOv6, YOLOv7, and YOLOv8) on a 

custom dataset of 16,000 images containing guns, knives, and 

heavy weapons. This dataset is meticulously curated from 

diverse sources, including the internet, public domain 
datasets, and private datasets. Each image is meticulously 

annotated to ensure accurate ground truth labels for weapons, 

enabling a robust comparison of each YOLO model's 

performance in weapon detection. 

Here's a breakdown of the methodology for each YOLO 
variant: 

 Data Acquisition: All YOLO models are trained on the 

same custom dataset of 16,000 images containing guns, 

knives, and heavy weapons. This ensures a consistent and 

controlled environment for evaluating the models' 

performance. 

 Data Preprocessing: Each image within the dataset 

undergoes meticulous annotation to ensure accurate 

ground truth labels for weapons. This annotation process 

is crucial for training the models effectively and evaluating 

their detection accuracy. 

 Model Training: Each YOLO variant undergoes individual 
training on the prepared dataset. This allows us to observe 

how each model's architecture and training parameters 

influence its performance in weapon detection. 

https://www.sciencedirect.com/topics/computer-science/deep-learning
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 Evaluation: After training, each YOLO model is evaluated 

on the same validation set of images within the dataset. 

This allows for a direct comparison of their performance 

in terms of weapon detection accuracy using metrics like 
mean average precision (mAP). 

By analysing the performance of each YOLO variant under 

these controlled conditions, this study aims to identify the 

most effective model for gun and weapon detection. This 

comparative analysis provides valuable insights into the 

strengths and weaknesses of each YOLO variant in this 

specific context, contributing to the ongoing development and 

optimization of object detection models for critical security 
applications. 

This model is developed in four major steps: 

a. Extracting Data: To train the YOLO models effectively for 

weapon detection, a diverse dataset encompassing various 

viewpoints, angles, and gun types was crucial. This data 
was meticulously compiled from trustworthy sources like 

Robo-flow and Kaggle, ultimately resulting in a dataset of 

16,000 images for the research project. 

b. Data Cleaning and Pre-processing: To ensure data quality, 

the cleaning process addressed inconsistencies and 

abnormalities in both structured and semi-structured data, 

including outliers, very large files, empty images, and 

blurry images. 

c. Feature Selection: The YOLO model analyzes 

relationships between previously stored data and the 

predicted bounding boxes within an image. This analysis 

helps pinpoint crucial features that distinguish objects like 

knives, guns, or other harmful weapons, ultimately 

enabling their accurate detection. 
d. Model Evaluation Metrics: The different types of loss 

encountered during the training process are visualized in 

Figure 1. Figure 2 presents a confusion matrix, which 

provides insights into how the model classified the objects 

as knives, heavy weapons, guns, or background. 

Additionally, Figure 3 shows a normalized version of the 

confusion matrix for the same categories, allowing for a 

clearer comparison of classification performance. These 

measures are depicted using the v8 model of YOLO. 

 

Figure 1: Types of Loss while Training 

 

Figure 2: Confusion Matrix 
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Figure 3: Normalized Confusion Matrix 

Figure 4 reveals that the gun detection model achieves a high 

F1 score at a confidence threshold of 0.399. However, this 

score significantly decreases as the confidence threshold 

increases. This indicates that while the model can accurately 

identify most firearms with high precision and recall at the 

0.399 threshold, it misses more guns as the confidence 

requirement becomes stricter. This suggests that the YOLO 

models might be better suited for applications prioritizing 

minimizing false positives, such as security systems, where 

mistakenly identifying an object as a gun is more critical than 

potentially missing a real weapon. 

 

                                                              Figure 4: F1-Confidence Curve 

Figure 5 shows that the gun detection model is more accurate 

than both the knife and heavy weapon detection models across 

all confidence levels. However, the accuracy of all three 

models decreases as the confidence threshold increases. This 

trade-off between precision and recall allows us to choose a 

suitable confidence threshold for each model based on the 
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desired outcome. For instance, prioritizing high accuracy 

would lead to selecting a higher confidence threshold. 

However, this would also result in more missed detections 

(false negatives). 

 

                                                        Figure 5: Precision-Confidence Curve 

Figure 6 shows that the gun detection model performs 

significantly better than the knife and heavy weapon models 

in terms of both precision and recall across different recall 
levels. However, the precision of all models decreases as we 

try to detect more weapons (higher recall). This trade-off 

between precision and recall allows us to choose a suitable 

operating point for each model. While the model initially 

focuses on learning specific details about weapons (high 

precision), as training progresses, it strives to identify all 

weapons in the images (high recall), leading to a decrease in 
false positives. Therefore, if prioritizing accuracy is crucial, a 

lower recall level with higher precision is preferable. 

However, this might result in missing some weapons in the 

images. 

 

                                                          Figure 6: Precision-Recall Curve 

Figure 7 shows that the gun detection model is better at 

identifying actual guns (higher recall) compared to heavy 

weapons and knives, regardless of the confidence level used. 

However, all three models become less accurate (recall 
decreases) as the confidence threshold increases. This finding 

allows us to choose a confidence threshold that strikes a 

balance between correctly identifying weapons (recall) and 

the number of false positives (precision) for each model. In 

other words, if prioritizing identifying all possible weapons is 

crucial, a lower confidence threshold can be used, even though 
it might lead to more false positives. 
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                                                        Figure 7: Recall-Confidence Curve 

IV.  COMPARATIVE STUDY OF VARIANTS 

Before the development of YOLO, bounding box proposals 

were first generated on the input image by Region Proposal 

Networks (RPNs), which were then used by object detector 

CNNs like R-CNN to refine the bounding boxes and remove 

duplicate detections. The R-CNN network's phases needed to 
be trained independently. The R-CNN network was sluggish 

and difficult to optimize. The designers of YOLO were driven 

to create a single-stage CNN that was real-time, easily 

optimized, and could be trained from start to finish. 

A. YOLO V1 

The input image is divided into S x S grid cells by YOLO. B 

bounding boxes and a "objectness" score P(Object) indicating 

the presence or absence of an object are predicted for each grid 

cell. In addition, every grid cell forecasts the conditional 

probability P(Class | item) of the class to which the item it 

contains belongs. YOLO forecasts five parameters (x, y, w, h, 

and a confidence score) for every bounding box. The 

coordinates (x,y) indicate the bounding box's centroid with 

respect to the grid cell. X and Y have restricted values between 

0 and 1. The bounding box's predicted width (w) and height 

(h) are expressed as a percentage of the image's total width and 

height. Thus, they range in value from 0 to 1. The bounding 

box's accuracy and presence of an object are indicated by its 

confidence score. The confidence score is 0 if there is no 

object inside the bounding box. The confidence score is equal 

to the intersection over union (IoU) of the predicted bounding 

box and the ground truth if the bounding box contains an 
object. Thus, YOLO predicts B x 5 parameters for each grid 

cell. Yolo forecasts C class probability for every grid cell. The 

prerequisite for these class probabilities is that the object must 

be present in the grid cell. For each grid cell with B bounding 

boxes, YOLO predicts just one set of C class probabilities. 

YOLO therefore forecasts C + B x 5 parameters for every grid 

cell. The image's total prediction tensor is equal to S x S x (C 

+ B x 5). YOLO utilizes S = 7, B = 2, and C = 20 for the 

PASCAL VOC dataset. For PASCAL VOC, the final YOLO 

prediction is therefore a tensor of size 7 x 7 x (20 + 5 x 2) = 7 

x 7 x 30. Lastly, as seen in figure 1 right image, YOLO version 
1 uses thresholding and Non-Maximum Suppression (NMS) 

to report final predictions. 

 

Figure 8: YOLO version 1 CNN
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YOLO version 1 The CNN is shown in Figure 8. It functions 

as a feature extractor thanks to its 24 convolution layers. Two 

fully linked layers that handle object categorization and 

bounding box regression come after them. A 7 x 7 x 30 tensor 

is the ultimate result. Like VGG19, YOLO CNN is a 

straightforward single path CNN. YOLO draws influence 
from Google's Inception version 1 CNN and uses 1x1 and then 

3x3 convolutions. All layers—aside from the final layer—use 

leaky ReLU activation. In the last layer, the activation 

function is linear.  

Limitations: 

1. YOLO finds it challenging to identify small objects that are 

grouped together. 

2. YOLO has trouble identifying items with peculiar aspect 

ratios. 

3. Localization errors are higher in YOLO than in Fast R-

CNN. 

B.  YOLO V2 

The second iteration of the YOLO algorithm, which debuted 

in 2016, is known as YOLO V2. The YOLO algorithm has 

been enhanced, and YOLO V2 is now faster and more 

accurate than the original. We will talk about YOLO V2's 

architecture and operation in this article. YOLO V2's 
architecture is made up of two fully connected layers and 24 

convolutional layers. A sequence of convolutional layers is 

applied to the input image in order to extract features from it. 

Subsequently, the bounding boxes and class probabilities of 

the objects in the image are predicted using these attributes. 

The utilization of anchor boxes is one of the main 

enhancements in YOLO V2. To forecast the bounding boxes 

of objects in a picture, anchor boxes are pre-defined boxes 

with varying sizes and aspect ratios. YOLO V2 can forecast 

bounding boxes for objects of various sizes and shapes more 

precisely by employing anchor boxes. 
The application of batch normalization in YOLO V2 is an 

additional enhancement. By normalizing the input to each 

layer, a technique known as batch normalization serves to 

lower overfitting and raise the model's accuracy. Additionally, 

YOLO V2 makes use of a method known as skip connections, 

which enables data to be transferred from older layers to 

subsequent layers. This enables the model to learn more 

intricate features, which helps to increase its accuracy. The 

output of YOLO V2 consists of bounding boxes and class 

probabilities for every object in the picture. The bounding 

boxes are represented by (x, y, w, h), where (w, h) stands for 

the box's height and width and (x, y) for its center. Class 
probabilities reflect the likelihood that an object belongs to a 

particular class. We have updated the YOLOv2 architecture to 

include our newly aided excitation layer. Each step can have 

AE added at the conclusion; however, our research indicates 

that the best time to introduce AE is at the conclusion of stage 

4. A sequence of activation tensors with comparable 

resolutions makes up each step. Assume, for instance, that the 

input image is 480 by 480 in size. Tensors with the following 

resolutions are present in stages 1, 2, 3, 4, 5, and 6: 240 x 240, 

120 x 120, 60 x 60, 30 x 30, and 15 x 15, respectively. 

IV.  

Figure 9: YOLO version 2 CNN 

The rectangular blocks in Figure 9, represent the different 

layers of the neural network.  The information flows through 

the network from left to right. Each layer performs a specific 

operation on the data, ultimately allowing the network to 

identify and localize objects in an image. The text “DUN” 

likely refers to the Deep layer, a custom layer specific to this 

architecture. To train YOLO V2, a substantial amount of 

annotated photo collections is required. The dataset is used to 

train the model to recognize different objects and the classes 

that go with them. The model is trained using a loss function 

that rewards successful predictions and penalizes faulty ones. 
After training, the model may be applied to identify items in 

fresh pictures. First, the model is applied to the input image, 

predicting the bounding boxes and class probabilities for every 

object in the picture. Kindly find the predicted bounding boxes 

to eliminate duplicates; non-maximum suppression is used to 

determine which bounding boxes are most likely for each 
object.                

Limitations: 

 Struggles with groups of small objects. 

 Prone to localization errors for unusual shapes. 

 Limited number of detectable object classes. 
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C. YOLO V3 

YOLOv3 boasts significant advancements over YOLOv2 in 

speed, accuracy, and class detection: 

 Backbone Boost: YOLOv3 utilizes the more 
powerful and efficient Darknet-53 backbone. 

 Multi-Scale Predictions: YOLOv3 predicts boxes at 
three scales. 

 

 

Figure 10: YOLO version 3 CNN 

                         Table 1: Comparison of backbones 

 

 

In table 1, among the models compared, Darknet-19 stands out 

for its efficiency. It requires the fewest operations, achieves 

the highest BFLOP/s (billion floating-point operations per 

second), and processes frames the fastest (FPS). This makes it 

ideal for real-time applications. However, this efficiency 

comes at a cost - Darknet-19 has the lowest accuracy. 

Conversely, ResNet-101 and ResNet-152 boast higher 

accuracy but are computationally expensive. Striking a 
balance is Darknet-53, offering better accuracy than Darknet-

19 while remaining more efficient than ResNet models. 
YOLOv3 shines in both speed and accuracy: 

 Darknet-52 offers 1.5x the speed of ResNet101 

without sacrificing accuracy (comparable to ResNet-
152). 

 YOLOv3 delivers high mAP and IOU values while 

being significantly faster than similar models. 

V.  

VI.  

Figure 12: Comparative speed of YOLO version 3 

In figure 12, This graph compares the speed and accuracy of 

various object detection models. The accuracy is measured by 

mAP (mean Average Precision) at a specific overlap threshold 

(IoU) of 50%. The faster a model is (lower inference time in 

milliseconds on the X-axis), the lower its accuracy tends to be 

(mAP on the Y-axis). For instance, RetinaNet-50-500 is more 

accurate than YOLOv3-416 but takes longer to process an 

image. This trade-off is crucial when choosing a model. If 

speed is essential for real-time applications, a faster model 

with slightly lower accuracy might be preferable. Conversely, 
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for tasks prioritizing high accuracy, a slower model can be 

chosen. 

The chart showcases a clear gap in performance when 

comparing different algorithms and their ability to detect 

objects of varying sizes based on Average Precision (AP). 

YOLOv2 significantly struggles with small objects, achieving 

an AP of only 5.0, compared to other algorithms like 

RetinaNet (21.8) and SSD513 (10.2). This emphasizes a major 

limitation of YOLOv2 in accurately detecting small objects. 

Figure 13: YOLOv3 comparison for different object sizes 

In figure 13, the performance of various object detection 

models, categorized as two-stage and single-stage methods. 

Two-stage methods excel in accuracy, particularly for 
challenging tasks like detecting small objects (AP Small) or 

objects with a high degree of overlap with the background 

(AP75). For instance, Faster R-CNN+++ with ResNet-101-

FPN backbone achieves a significantly higher mAP (36.2%) 

compared to the single-stage YOLOv3 with Darknet-53 

backbone (31.0%). However, this accuracy comes at the cost 

of speed, as two-stage models are generally slower than 

single-stage models. In contrast, single-stage models prioritize 

speed, making them suitable for real-time applications. 

Ultimately, the choice between a two-stage and single-stage 

model depends on the specific needs of the task. If high 

accuracy is paramount, a two-stage model is preferable, while 
real-time applications might benefit more from a faster single-

stage model. 

A key difference between YOLOv2 and YOLOv3 lies in their 

approach to class prediction. YOLOv3 utilizes independent 

logistic classifiers and binary cross-entropy loss, allowing it to 

assign multiple class labels to each bounding box. This makes 

it ideal for complex datasets like Microsoft's Open Images 

Dataset (OID), where objects often have overlapping labels 

(e.g., "man" and "person" for the same individual). In contrast, 

YOLOv2 employed a single SoftMax function, restricting 
each bounding box to a single class, which limited its ability 

to effectively handle such datasets. This multi-label approach 

in YOLOv3 enhances its ability to tackle diverse and nuanced 

object classification tasks. 

Limitations: 

 Small object detection: YOLOv3 can struggle with 
very small objects or tightly packed groups due to its 

grid cell limitations.  

 False positives: Complex scenes or unusual shapes 

can lead to inaccurate object identification.  

 Computational cost: While faster than earlier 

versions, YOLOv3 still requires significant resources 

for real-time applications. 

D. YOLO V4 

YOLOv4 is a great option for many applications since it is 

made to offer the ideal ratio of speed to accuracy. 
 

 
Figure 14: YOLO version 4 CNN 
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In figure 14, the layer architecture of the YOLO version 4 in 

the CNN methodology provides with a step wise layer 

transformation that took place in the evolution of the base 

object detection model. 

To maximize its performance, YOLOv4 employs several 

cutting-edge innovations. These include Mish-activation, 
DropBlock regularization, CIoU loss, Self-adversarial-

training (SAT), Weighted-Residual-Connections (WRC), 

Cross-Stage-Partial-connections (CSP), and Cross Mini-Batch 

Normalization (CmBN). State-of-the-art outcomes are 

obtained by combining these attributes. 

The input, the neck, the head, and the backbone make up most 

of an object detector. YOLOv4's core is used to predict object 

bounding boxes and classes after being pre-trained on 

ImageNet. A variety of models, such as VGG, ResNet, 

ResNeXt, or DenseNet, could serve as the foundation. The 

neck portion of the detector, which typically has many top-

down and bottom-up routes, is used to gather feature maps 
from various stages. The final object detections and 

classifications are made using the head portion. 

Additionally, YOLOv4 employs what are referred to as "bag 

of freebies," or strategies that raise model accuracy during 

training without raising inference costs. A popular "bag of 

freebies" method for object detection is data augmentation, 

which boosts the input photos' variability to strengthen the 

model's resilience. Photometric distortions (changing an 

image's brightness, contrast, hue, saturation, and noise) and 

geometric distortions (adding random scaling, cropping, 

flipping, and rotating) are two types of data augmentation 

examples. These methods improve the model's ability to 

generalize to many image kinds. 

Limitations: 

 Data Dependence: YOLOv4's performance is 

sensitive to the amount and quality of training data. 

Insufficient or poorly labelled data can lead to 

decreased accuracy.  

 Complex Feature Learning: The model's architecture 

may hinder its ability to learn complex features 

effectively, potentially impacting its performance on 

challenging tasks.  

 Class Scalability: While capable, YOLOv4 might 

face difficulties with extremely large and diverse 

datasets containing a vast number of object classes.  

 Occlusion Handling: Partially occluded objects can 

pose a challenge for accurate detection, leading to 

missed identifications or inaccurate bounding boxes.  

 Long-Tail Distribution Sensitivity: YOLOv4 may 

require specific adjustments to handle datasets where 

a few classes are very common and many are rare, 

known as a long-tail distribution. 

E. YOLO V5 

A computer vision model in the You Only Look Once 

(YOLO) family is called YOLOv5. YOLOv5 is frequently 

utilized for object detection. YOLOv5 is available in four 

primary variants, with increasing accuracy rates: small (s), 

medium (m), large (l), and extra-large (x). The training time 

for each version varies as well. 

 
Figure 15: YOLO version 5 CNN 

In figure 15, the evolution of YOLO version 4 was seen in a 

much simpler and a more efficient CNN base model approach 

hat provide much clarity into the scope and the emergence of 

new implementations within the hyper parameters and 

workload of the new YOLO version 5. 

The first object detector to link the process of class label 

prediction with bounding box prediction in an end-to-end 

differentiable network was the YOLO model. 
There are three primary components to the YOLO network: 

 Convolutional neural networks that aggregate and 

produce picture characteristics at various granularities 

are the backbone of the network. 

 Neck: An arrangement of layers that blends and 

combines picture characteristics before forwarding them 

to prediction. 

 Head: Uses characteristics from the neck to predict the 

box and class. 
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Figure 16: Overall architecture of YOLO version 5 

In figure 16, first,  a backbone network (CSPDarknet) extracts 

image feature. Then, a neck section (PAN) refines these 

features, allowing for detection of various object sizes. 

Finally, the head (YOLO layer) interprets the processed 

features to predict bounding boxes and class probabilities for 

the objects in the image. This architecture enables YOLOv5 

to achieve fast and accurate object detection in real-time. 

YOLOv5 utilizes CSPDarknet53 as its backbone, built upon a 

stack of CBS (convolution, batch normalization, and SiLU 

activation) and C3 modules. Finally, an SPPF module is added 

to further enhance the backbone's feature expression 
capabilities. Notably, the SPPF module avoids redundant 

operations compared to SPPNet by max pooling previously 

max pooled features, leading to significant speed 

improvements. 
 

 
Figure 17: Structure of SPPF 

The image you sent depicts the structure of Spatial Pyramid 

Pooling Fully Connected (SPPF) layer, commonly used in 

object detection with convolutional neural networks (CNNs). 

Here's how it works: the SPPF layer takes feature maps 

extracted from earlier layers, which contain information about 

the image at various scales and locations. It then applies 

multiple pooling operations of different sizes (like 1x1, 3x3, 

and 5x5) in parallel on these maps. This captures information 
about objects at various extents within the image. Each 

pooling operation likely uses max pooling, selecting the most 

prominent features at those different scales. Finally, the 

outputs from all these pooling layers are combined to create a 

single feature vector. This enriched vector, containing 

information about objects at various scales, is then fed into 

subsequent layers of the network for object detection. Overall, 

SPPF helps the network become more robust to variations in 

object size and position within the image, improving object 

detection accuracy. 

YOLOv5 leverages both Feature Pyramid Network (FPN) and 
Path Aggregation Network (PAN) techniques for object 

detection. FPN up samples feature maps extracted from 

different levels of the backbone network, creating multiple 

new feature maps at various scales. This allows YOLOv5 to 

effectively detect objects of different sizes within the same 

image. 

 

Figure 18: (a) Without Fixture Fusion, (b) FPN and (c) PAN 

In figure 18, Default,FPN (Feature Pyramid Network), and 

PAN (Path Aggregation Network). All use a CNN backbone 

for feature extraction but differ in processing these features. 

The default architecture, using only the final layer features, 
struggles with objects of various sizes. FPN tackles this by 

constructing a pyramid of feature maps at different scales, 

allowing for better handling of various object sizes. PAN also 

improves multi-scale features by incorporating a bottom-up 

pathway to refine lower-resolution features and using 

shortcuts to combine information from different levels. In 

essence, both FPN and PAN offer more sophisticated 

approaches to feature representation compared to the default 

method, leading to better object detection across various sizes. 

 

Figure 19: YOLO version 5 neck 

In figure 19, the neck component of YOLOv5,which utilizes 

Path Aggregation Network (PAN) to enhance the features 
extracted from the backbone (CSPDarknet) for object 

detection. The neck tackles the challenge of multi-scale object 

detection by processing features at different resolutions. It 

accomplishes this through a two-pronged approach: a bottom-

up pathway that upscales lower-resolution features to better 

detect small objects, and a top-down pathway that refines 

higher-resolution features using spatial pooling. Shortcut 

connections directly link these pathways, ensuring 

information flows across different scales. Finally, PAN 

merges the processed features from both pathways, resulting 

in a richer set of feature maps that capture objects at various 
sizes within the image. These enhanced features are then 

passed on to the head of the YOLOv5 model for object 
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detection. In essence, PAN's combination of bottom-up, top-

down processing, and shortcut connections allows YOLOv5 

to effectively detect objects of varying sizes within an image. 

In YOLO, bounding box predictions involve adjusting a pre-

defined anchor box to match the actual object's location and 

size. Starting with the top-left corner of the feature map at (0, 
0), the model predicts an unadjusted center point (rx, ry). 

Using this information, along with the prior anchor's 

dimensions (pw, ph), and offsets calculated by the model (sx, 

sy), the final prediction box (gx, gy, gw, gh) is obtained by 

adjusting the anchor's center and size to accurately represent 

the object's position and dimensions within the image. 
 

 

Figure 20: YOLO version 5 head 

In figure 20, per convolutional batch in the TOLO version 5 

model, a different number of characteristic features are taken 
into consideration for per CNN prediction. 

YOLOv5 comes in five different versions: YOLOv5x, 

YOLOv5l, YOLOv5m, YOLOv5s, and YOLOv5n. 

                                                         

Table 1: Variants of YOLO version 5 

 

 

Figure 22: YOLO V5 – Backbone, neck and head 

In figure 22, backbone, a modified Darknet called 

CSPDarknet, efficiently extracts image features. The neck, 

utilizing Path Aggregation Network (PAN), tackles multi-

scale object detection. PAN employs a two-pronged approach: 

a bottom-up pathway to upscale low-resolution features for 
small object detection and a top-down pathway to refine 

higher-resolution features. Shortcut connections ensure 

information flows across scales. Finally, the head (YOLO 

layer) interprets the processed features from PAN to predict 

bounding boxes and class probabilities for the objects detected 

in the image. This efficient feature extraction, multi-scale 

processing, and final interpretation by the head allow 

YOLOv5 to achieve fast and accurate object detection in real-

time. 

F. YOLO V6 

This updated version's original goal was to address the real-

world issues that arose while working with industrial 

applications. The Meituan Visual Intelligence Department of 

the Chinese retail platform has developed a target detection 
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framework called MT-YOLOv6. It is a single-stage object 

detection framework that is primarily intended for industrial 

use. It outperforms YOLOv5 in terms of inference time and 

detection accuracy thanks to its hardware-efficient design. For 

production use, this makes it the optimal OS version of the 

YOLO algorithms. 
 

 

Figure 23: YOLO version 6 CNN architecture 

YOLOv6 provides many model sizes for YOLO architectures: 
YOLOv6-n (4.3M parameters), YOLOv6-tiny (15M 

parameters), and YOLOv6-s (17.2M parameters). Larger sizes 

are anticipated even more. It is commonly known that the 

YOLOv6 neck and backbone function well with GPUs, 

cutting down on hardware latency and opening more use cases 

for industrial applications.  

GPU processing with the Rep operator is preferred by the 

EfficientRep backbone of YOLOv6, enabling structural 

reparameterization. With this method, trained convolutional 

neural network layers are reorganized to improve inference 

speed. 

As the figure below illustrates, RepConv layers are used by 
EfficientRep, followed by RepBlocks. A ReLU activation 

unit, a batch normalization layer, and several RepVGG layers 

make up each RepConv layer.  
 

 
 

Figure 24: YOLO version 6 backbone 

In the figure 24, a key component of YOLOv6 for object 
detection. This backbone prioritizes efficiency while 

maintaining accuracy.The fundamental building block is the 

RepBlock, a residual block that facilitates faster learning and 

better performance with fewer resources. Convolutional layers 

extract features, while CBL (Convolution, Batch 

Normalization, Leaky ReLU) refines them and introduces 

non-linearity. The SE (Squeeze and Excitation) mechanism 

helps focus on important features. Finally, RepConv layers, 

used during prediction, are simplified versions of 

convolutional layers, reducing computation cost while 

maintaining similar accuracy. Stride-2 in some layers halves 

the dimensions of data as the network progresses. Overall, the 
EfficientRep backbone achieves a balance between accuracy 

and efficiency by incorporating these techniques. The specific 

number of these components can vary depending on the 

chosen YOLOv6 variant, with smaller versions prioritizing 

speed for resource-limited devices. While this explanation 

offers a high-level overview, a deeper understanding of 

convolutional neural networks and optimization techniques 

would be necessary to grasp the inner workings of each layer. 

Based on PANet architecture, the Rep-PAN neck may employ 

RepBlocks rather than CSPNet blocks. To achieve improved 

object localization, PANet topology enhances low-level 
patterns through path augmentation. Concatenation and fusion 

are used by the PANet structure to anticipate the object class 

and mask. 
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Figure 25: YOLO version 6 neck 

 

In figure 26, YOLOv6's Rep-PAN, tackles multi-scale object 

detection. It receives feature maps of various resolutions from 

the backbone, suitable for different object sizes. A bottom-up 

pathway upscales low-resolution maps to improve small 
object detection, while a top-down pathway refines higher-

resolution ones. RepBlocks, efficient building blocks like 

those in the backbone, are used throughout the neck for feature 

extraction. Feature fusion then combines the processed 

information from both pathways, creating a richer feature 

representation. Finally, a PAN Channel Attention mechanism 

analyzes the importance of data within the fused features and 

emphasizes informative channels, resulting in a more effective 

representation for object detection at various scales. This 

combination of upscaling, refining, feature fusion, and 

attention allows the Rep-PAN neck to excel at multi-scale 

object detection within a single image, while the specific 
configuration can be adjusted based on the chosen YOLOv6 

variant for efficiency on resource-limited devices. 

Understanding the inner workings of each layer and the 

optimization techniques used would require further 

exploration of convolutional neural networks and attention 

mechanisms. 

The mean Average Precision (mAP) statistic is used to 

compare the three YOLOv6 variations that are currently 

available. Usually, this is done to assess how well object 

detection models work. mAP averages the AP for all classes 

by measuring the AP for each class label.  
Four metrics—precision, recall, and a precision-recall curve 

for each threshold—are used to derive average precision. 

Lastly, the average of each AP value is used to get the mean 

Average Precision. 

The most sophisticated SOTA detection framework, 

YOLOv6, outperforms YOLOv5 and YOLOX in terms of 

accuracy performance. Let's talk about some variations among 

the three models.  

1. On the COCO validation dataset, the values for 

Average Precision are as follows: YOLOv5-small 

provides 37.3 mAP, YOLOX-small provides 40.5 

mAP, and YOLOv6-small leads the field with 43.1 
mAP. 

2.  Speed: The YOLOv5-nano can reach a latency of 

5.38 ms, whilst the YOLOv6-small has a latency of 
3.59 ms. 

3.  Backbone: YOLOX employs the CSPDarkNet53 

backbone, while YOLOv5 uses the CSPNet 

backbone. Because YOLOv6 can effectively employ 

GPU hardware and runs on the EfficientRep 

backbone, which has arguably stronger input 

representation capabilities, the detection network is 
strengthened for industrial applications. 

4. Matching: YOLOv5 defines positive samples by 

comparing the aspect ratios of ground truth boxes and 

anchors. It then employs center point offset to ensure 

that each GT is allocated to a greater number of 

anchors. YOLOv6 and YOLOX, on the other hand, 

employ SimOTA, which dynamically produces more 
high-quality positive samples, improving detection 
accuracy by 1.3% AP in comparison to YOLOv5. 

5. Loss: For their tiny model, YOLOv6 utilizes a SIoU 

loss; for the other models, they use a simple IoU; 

YOLOX employs an IoU loss; and YOLOv5 
employs an IoU loss. 

Although small object detection, false positives, and 

computational cost are common limitations of previous 

versions of YOLO, the following are some potential 

limitations unique to YOLOv6:  
Overfitting due to EfficientNet-L2 

 Potential for Quantization Issues 

 Limited Research and Development 

 Integration Challenges 

G. YOLO V7 

The current version of YOLO models, YOLOv7, represents a 

step forward for real-time object identification. Compared to 

its earlier iterations (YOLOv5, for example), YOLOv7 infers 

more quickly and accurately, raising the bar for object 

recognition. 

The authors of YOLOv7 aimed to advance object detection by 

developing a network architecture that could predict bounding 
boxes at comparable inference speeds and with greater 

accuracy than its competitors. 

Efficient inference speed is dependent on the effectiveness of 

the YOLO networks convolutional layers in the backbone. 

WongKinYiu used Cross Stage Partial Networks to set off 

along the route of maximum layer efficiency. The authors of 

YOLOv7 expand on previous research on this subject by 

considering the amount of memory required to maintain layers 

in memory as well as the distance required for a gradient to 

back-propagate through the layers. Their network will be able 

to learn more effectively the shorter the gradient. E-ELAN, an 

expanded variant of the ELAN computational block, is the last 
layer aggregate they select. 
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Figure 26: Efficient Layer Aggregation in YOLO V7 

Because various applications need varying degrees of 

accuracy and inference speeds, object detection models are 

usually released in a series of models that scale up and down 

in size. Object detection models consider the network's 

breadth, depth, and training resolution. In YOLOv7, the 

writers’ concatenate layers together while simultaneously 

scaling the network's width and depth. Studies on ablation 

demonstrate that this method maintains the ideal model design 

as it scales for various sizes. 
 

 
 

Figure 27: Compound scaling in YOLO V7 

In re-parameterization procedures, a set of model weights is 

averaged to produce a model that is more resilient to the 

general patterns it is attempting to represent. Recently, module 

level re-parameterization—where individual network 

components have their own re-parameterization strategies—

has drawn attention in study. 
 

 

Figure 28: Re-parametrization in YOLO V7 

 

 

In figure 28, YOLO V7 utilizes a new ELAN (Efficient Layer 

Aggregation Network) backbone for feature extraction. ELAN 

is designed for efficiency, enabling good performance on 

resource-constrained devices by controlling information flow 

within the network. The backbone outputs feature maps 

containing information about the image at various levels of 
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detail. These maps are then processed by the E-ELAN 

(Extended Efficient Layer Aggregation Network) neck, which 

builds upon ELAN by using group convolutions to enhance 

the model's learning ability. Finally, the processed features are 

fed into the head (YOLO layer), which predicts bounding 

boxes and class probabilities for the objects detected in the 
image. This architecture allows YOLOv7 to achieve fast and 

accurate object detection in real-time. It's important to note 

that the specific configuration of ELAN and E-ELAN can vary 

depending on the chosen YOLOv7 variant, with options 

optimized for speed or accuracy based on the application. 

While this explanation provides a high-level overview, a 

deeper understanding of ELAN and E-ELAN would require 

further exploration of convolutional neural networks. 

 

Although YOLO v7 bears certain constraints from its 

predecessors, it may also have the following unique 

limitations: 

 Potential Accuracy Trade-off for Speed 

 Integration Challenges 

 Limited Research and Development Time 

 Newer Architecture and Potential Unforeseen Issues 

H. YOLO V8 

YOLOv8 is a model that comes with built-in functionality for 

object recognition, classification, and segmentation tasks. It 

can be accessed via a command line interface and a Python 

package. 

YOLOv8 offers enhancements to the developer experience as 

well as architecture. In contrast to YOLOv5—its 

predecessor—YOLOv8 includes: 

 A brand-new system for anchor-free detection. 

 Modifications to the model's convolutional blocks. 

 The mosaic augmentation that was used throughout 
training was disabled prior to the last ten epochs. 

 

 

Figure 29: Architecture of YOLO version 8 

The architecture of YOLO V8 shown in figure 29, prioritizes 

both speed and accuracy for real-time object 

detection.CSPDarknet53, a modified and efficient Darknet 

network, forms the backbone for feature extraction. The PAN 

neck tackles multi-scale object detection by employing a two-

pronged approach: a bottom-up pathway to improve low-
resolution features for small objects and a top-down pathway 

to refine higher-resolution features. Shortcut connections 

ensure information flows across scales. PAN then merges the 

processed features from both pathways. Finally, the head 

(YOLO layer) interprets these features, predicting bounding 

boxes and class probabilities for the detected objects. This 

combination of efficient feature extraction, multi-scale 

processing, and final interpretation allows YOLOv8 to 

achieve fast and accurate object detection in real-time. While 

YOLOv8 is under development and might have variations for 

different goals, this explanation provides a high-level 

overview, with a deeper understanding requiring exploration 

of convolutional neural networks. 

An anchor-free model is YOLOv8. This implies that rather 

than predicting an object's offset from a known anchor box, it 

predicts an object's centre directly. Because they could 
represent the distribution of the target benchmark's boxes but 

not the distribution of the custom dataset, anchor boxes were 

a notoriously difficult component of older YOLO models. By 

reducing the quantity of box predictions, anchor-free detection 

expedites Non-Maximum Suppression (NMS), a laborious 

post-processing stage that sorts through potential detections 

following inference. 
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Figure 30: YOLO version 8 COCO evaluation 

In figure 30, YOLOv8 object detection models based on their 

performance in the COCO dataset. Each model (e.g., 

YOLOv8n, YOLOv8s) is evaluated for accuracy (mAP), 

speed (inference time on CPU and GPU), and resource usage 

(model size and computations). You can choose the best 
model for your needs by considering this trade-off. For 

example, a smaller, faster model (like YOLOv8n) might be 

ideal for real-time object detection on a low-powered device, 

even if it's slightly less accurate. Conversely, if you have more 

resources and prioritize top accuracy, a larger, slower model 

(like YOLOv8X) could be the better choice. 

      V.  RESULTS AND DISCUSSION 

Compared to other YOLO variants evaluated on the same 

dataset of gun and weapon images, YOLOv8 demonstrated 
exceptional performance. While all models exhibited high 

accuracy, YOLOv8 surpassed them with an impressive 92.5% 

average precision, indicating it correctly identified weapons in 

92.5% of images. Additionally, its high sensitivity and 

specificity showcase superior effectiveness in both detecting 

weapons and distinguishing them from other objects. 

Furthermore, the model's mean IoU of 53.6% signifies its 

predicted bounding boxes closely matched the actual weapon 

locations, solidifying its position as the most accurate weapon 

detection model among the YOLO variants tested. This 

remarkable performance, coupled with its real-time capability, 

highlights YOLOv8's potential as the leading choice for robust 
and accurate weapon detection in security applications. 

In figure 31 below, YOLO Version 8 performs extremely well 

in detecting custom dataset consisting of weapons and 

identifying them individually as weapons within the  

categories defined. The accuracy achieved in as per required 

and desired standards. 

 

 

Figure 31: Custom Detection Result 

VI. CONCLUSION AND FUTURE WORK 

While this research presents a YOLOv8-based weapon 

detection system achieving an 88.2% mAP on a custom 
dataset, it's crucial to consider its performance within the 

context of the comparative study. While YOLOv8 

demonstrates good accuracy, further analysis is needed to 

determine its position among other YOLO variants. While the 

proposed system is fast enough for real-time applications, a 

direct comparison with the processing speeds of other YOLO 

models would provide a more comprehensive understanding 

of its relative efficiency. Future improvements, including 

training on a larger dataset and incorporating features like 

occlusion handling and motion tracking, hold potential to 

further enhance the performance and robustness of the 
YOLOv8-based system. Additionally, deploying the system in 

real-world scenarios like security cameras and surveillance 

systems will provide valuable insights into its practical 

effectiveness compared to other YOLO variants in operational 

settings. 
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