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ABSTRACT- Accurate image segmentation remains a 

cornerstone challenge in computer vision, particularly under 

open-set conditions where object variability and scene 

complexity hinder generalization. To address these 

limitations, we propose a novel visual-based methodology 

entitled Visual-Based Space Debris Segmentation Using an 

Enhanced Segment Anything Framework. This approach 

synergistically integrates an optimized clause-aware prompt 

mechanism derived from Grounding DINO with a 
structurally refined version of the Segment Anything Model 

(SAM). By embedding hierarchical non-maximum 

suppression and adaptive region purification through 

connected component filtration, we substantially augment 

segmentation fidelity. Furthermore, we incorporate ViT-

Matte, a vision transformer-based trimap enhancement 

module, to improve boundary localization and reduce 

aliasing in edge delineation. Extensive validation on the 

COCO2017 benchmark reveals that our framework elevates 

Mean Pixel Accuracy by 6.04%, culminating at 24.74%, 

thereby substantiating its efficacy in foreground-

background discrimination under visually ambiguous 
scenarios such as orbital debris fields. 

KEYWORDS- Grounding DINO, ViT-Matte, Space 

Debris Detection, Open-Set Recognition, Image 

Segmentation. 

I. INTRODUCTION 

Image segmentation has long stood as a cornerstone in the 

field of computer vision, serving as a critical precursor to 
high-level visual understanding and decision-making in 

intelligent systems. The fundamental objective of 

segmentation lies in partitioning a digital image [1] into 

semantically coherent and non-overlapping regions based 

on local and global visual cues—such as intensity, texture, 

geometry, and contextual structure [2]. While conventional 

segmentation methods have historically yielded satisfactory 

outcomes under constrained conditions [3], they often 

deteriorate in performance when exposed to diverse, 

cluttered, or unstructured environments, especially in open-

set or dynamically evolving contexts[4]. 

Recent advancements in aerospace robotics have 

dramatically underscored the exigency for robust 

segmentation techniques capable of supporting visual 

perception in spaceborne operations, which support correct 

pose information of the aimed manipulated object to help 

aerospace robot procedure the post-capture manipulation 

tasks [5]. One such crucial application is space debris 

detection, where autonomous robotic agents are tasked with 

identifying, localizing, and tracking non-cooperative and 

irregular objects in low Earth orbit [6]. The lack of prior 
information, coupled with the diversity of debris geometries 

and lighting conditions, renders traditional segmentation 

algorithms—such as thresholding, edge detection, and 

region growing—insufficient for the intricacies of orbital 

scene understanding. 

Classical machine vision algorithms, including clustering-

based models and handcrafted feature extraction 

pipelines—are inherently limited in their ability to 

generalize across object classes or adapt to unseen instances. 

As demonstrated in [7], robust performance in high-degree-

of-freedom robotic systems requires motion planning and 
perception strategies that adapt to complex, dynamic 

environments—a limitation that traditional vision pipelines 

struggle to overcome. With the emergence of deep 

convolutional neural networks (CNNs), more advanced 

frameworks such as Fully Convolutional Networks (FCNs), 

DeepLab, and Mask R-CNN have introduced task-specific 

architectural innovations, enabling improved semantic 

segmentation. However, even these models often fall short 

in open-world scenarios, where the model must infer object 

boundaries and semantic meaning in environments with 

unknown class distributions and domain shifts [8]. 

To address these challenges, this study introduces a novel 
methodology titled Visual-Based Space Debris 

Segmentation Using an Enhanced Segment Anything 

Framework. This approach extends Meta AI's Segment 

Anything Model (SAM), a recent paradigm shifts in 
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foundation models for image segmentation—by embedding 

specialized modules for aerospace perception [9][10][11]. 

Our enhanced framework refer the work in [12] leverages 

clause-aware visual prompting through Grounding DINO, 

combined with transformer-based edge refinement via ViT-

Matte, and includes spatial consistency augmentation using 

adaptive connected component denoising. 

This enhanced framework is explicitly tailored for the high-
stakes domain of autonomous aerospace robotics [13], 

where visual feedback forms the backbone of mission-

critical operations such as on-orbit servicing [14], debris 

mitigation, and free-flyer navigation [15]. The model's 

capacity to perform open-set segmentation without relying 

on predefined object categories makes it uniquely 

advantageous for zero-shot generalization in unstructured 

orbital environments [16]. By integrating multi-scale 

context modeling and transformer-driven attention 

mechanisms, our approach not only enhances mask 

precision at object boundaries but also improves 
segmentation robustness under varying illumination, 

occlusion, and viewpoint perturbations common in 

spaceborne visual scenes [17][18][19][20]. 

Extensive evaluations conducted on benchmark datasets and 

synthetic orbital imagery substantiate the superiority of our 

method in terms of mean pixel accuracy and boundary 

localization [21]. The proposed framework sets a precedent 

for advancing space-capable vision systems and 

demonstrates the transformative potential of foundation 

models in robotic autonomy for aerospace applications. 

This work introduces a novel visual perception framework 
titled Visual-Based Space Debris Segmentation Using an 

Enhanced Segment Anything Framework, specifically 

designed for autonomous aerospace robotic systems 

operating in unstructured orbital environments. The primary 

contributions include: (1) the integration of clause-aware 

prompt generation using Grounding DINO to enable 

context-driven object querying in open-set conditions; (2) 

the incorporation of ViT-Matte, a vision transformer-based 

module, to enhance edge refinement through trimap-aware 

processing; and (3) the implementation of a robust post-

processing pipeline featuring adaptive connected 

component denoising to improve segmentation consistency 
under variable illumination and geometric ambiguity. By 

tailoring the Segment Anything Model (SAM) to the space 

domain, this framework enables zero-shot generalization to 

unknown debris objects and demonstrates superior 

performance in segmentation precision, thereby advancing 

the state of visual autonomy for next-generation aerospace 

robots. 

II. RELATED WORK 

In the era of intelligent vision systems, image segmentation 
has evolved as a pivotal function underpinning numerous 

high-level perception tasks across disciplines, including 

autonomous navigation, medical imaging, and remote 

sensing [22][23][24][25]. However, the shift from closed-

set recognition paradigms—where model generalization is 

confined to fixed taxonomies—to open-set semantic 

segmentation has exposed inherent limitations in traditional 

approaches, particularly under dynamic and unstructured 

environments such as low Earth orbit (LEO). This has 

catalyzed an increasing interest in developing models 

capable of discerning previously unseen object categories 

without explicit retraining [26]. 

Open-set segmentation, often interchangeably referred to as 

open-vocabulary segmentation, seeks to endow vision 

models with the capacity to process objects beyond their 

training distribution. Prominent efforts in this domain 

leverage Vision-Language Models (VLMs) such as CLIP, 

ALIGN, and BLIP, which exploit semantic alignment 
between visual inputs and textual descriptions to enable 

zero-shot generalization [27]. Despite their success, these 

models exhibit limited performance in scenarios demanding 

spatial precision and fine-grained boundary delineation—

such as space debris identification and segmentation where 

objects are irregular, occluded, or partially visible 

[28][29][30]. 

To address this challenge, Meta AI introduced the Segment 

Anything Model (SAM) as a foundational open-set 

segmentation framework [31]. Trained on an unprecedented 

scale—encompassing over 11 million images and one 
billion masks—SAM demonstrates the capacity to generate 

segmentation masks from flexible prompt modalities (e.g., 

points, boxes, or free-form text). Its architecture comprises 

an image encoder, a prompt encoder, and a lightweight 

mask decoder, enabling real-time segmentation with high 

generalizability [32][33][34][35]. However, SAM’s reliance 

on coarse-grained text embeddings and multi-mask 

predictions often undermines its applicability in contexts 

requiring precise instance-level segmentation and single-

mask accuracy, as demanded in aerospace robotic systems 

performing visual-based orbital debris processing. 
In parallel, Grounding DINO has emerged as a leading 

paradigm for open-set object detection. It synthesizes 

Transformer-based detection architectures with grounded 

textual supervision, allowing for clause-aware prompt 

comprehension and robust concept generalization. 

Grounding DINO achieves state-of-the-art performance on 

various benchmarks (e.g., LVIS, ODinW, and RefCOCO) 

and excels at aligning human input with complex visual 

scenes. Nonetheless, while its text-guided detection 

performance is compelling, its integration into segmentation 

pipelines remains non-trivial due to lack of edge-aware 

refinement and component-level denoising [36]. 
Motivated by the critical need for robust, high-fidelity 

visual segmentation in orbital environments, this paper 

introduces a novel framework titled Visual-Based Space 

Debris Segmentation Using an Enhanced Segment 

Anything Framework[37]. The proposed method addresses 

existing limitations by synergistically integrating 

Grounding DINO for clause-sensitive prompt interpretation 

and ViT-Matte for transformer-guided edge enhancement. 

Furthermore, a connected component denoising pipeline is 

employed to refine segmentation outputs by suppressing 

artifact noise and enforcing spatial continuity. 
Unlike conventional terrestrial applications, aerospace 

robotic platforms contend with rapid illumination changes, 

partial occlusions, and background clutter caused by Earth 

limb reflections or other satellite structures. As such, our 

enhanced framework is meticulously engineered to uphold 

segmentation integrity under such adversarial conditions, 

enabling accurate isolation and tracking of unstructured 

debris using visual inputs alone [38]. By fusing grounding-

based semantic understanding with prompt-based spatial 

awareness and transformer-level boundary precision, this 
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work sets a new benchmark for open-set segmentation in 

aerospace autonomy. 

III.    METHODOLOGY 

Use either SI (MKS) or CGS as primary units. (SI units are 

strongly encouraged.) English units may be used as 
secondary units (in parentheses). This applies to papers in 

data storage. For example, write “15 Gb/cm2 (100 

Gb/in2).” An exception is when English units are used as 

identifiers in trade, such as “3½ in disk drive.” Avoid 

combining SI and CGS units, such as current in amperes 

and magnetic field in oersteds. This often leads to confusion 

because equations do not balance dimensionally [39]. If you 

must use mixed units, clearly state the units for each 

quantity in an equation. 

The SI unit for magnetic field strength H is A/m. However, 

if you wish to use units of T, either refer to magnetic flux 

density B or magnetic field strength symbolized as µ0H. 
Use the center dot to separate compound units, e.g., 

“A·m2.” 

A. Feature Encoding for Aerospace Debris Dynamics 

In the context of real-time perception for aerospace robotic 

platforms, the accurate capture of temporal dynamics is 
paramount, particularly in the presence of rapidly evolving 

scenes populated by non-cooperative orbital debris. 

Conventional temporal modeling frameworks, such as 3D 

convolutional neural networks (3D-CNNs), convolutional 

recurrent networks (e.g., ConvLSTM and ConvGRU), and 

optical flow estimation pipelines, have been extensively 

employed across terrestrial applications [40]. However, 

their computational inefficiency, high memory overhead, 

and lack of real-time compatibility render them ill-suited for 

deployment aboard computationally constrained spacecraft. 

Specifically, 3D convolutions incur cubic growth in 

memory footprint and floating-point operations (FLOPs) 
with respect to spatiotemporal resolution [41]. Similarly, 

recurrent memory modules such as ConvLSTM/ConvGRU, 

though temporally expressive, are sequential in nature, 

limiting parallelization and resulting in latency-prohibitive 

architectures. Optical flow methods, while intuitively 

attractive, require the instantiation of dedicated branches for 

motion field extraction, violating the principle of end-to-end 

optimization. Moreover, these methods exhibit diminished 

efficacy under camera jitter conditions prevalent in satellite-

mounted systems, where small object motion, such as that 

of micro-debris, becomes indistinct compared to the 
unstable background. 

Recent explorations into non-local attention mechanisms 

have enabled long-range spatiotemporal context modeling 

by capturing token-level interdependencies. Notably, 

methods based on Constrained Self-Attention (CSA) have 

demonstrated promising trade-offs between motion 

modeling efficiency and representational capacity. 

However, existing designs often emphasize motion-agnostic 

global aggregation, leading to degradation in fine-grained 

object boundary detection, especially for visually 

ambiguous or low-contrast space debris. 

To this end, we integrate a Parallel Temporal Fusion 
Module (TFM) into our Visual-Based Space Debris 

Segmentation Using an Enhanced Segment Anything 

Framework, tailored for aerospace robotic segmentation. 

The TFM employs multi-scale constrained attention filters 

to preserve temporal continuity while suppressing 

background fluctuation noise. 

Let the high-level spatial feature map output from the 

spatial feature module (SFM) be denoted as 

𝚵𝑠 ∈ ℝΓ×𝒩×ℋ×𝒲 
This tensor is partitioned into four parallel groups along the 

channel dimension, represented as 

𝚵𝑠
(𝜄)

∈ ℝ
Γ
4

×𝒩×ℋ×𝒲 , 𝜄 ∈ {1,2,3,4} 
Each partition is forwarded to a unique CSA path 

parameterized by varying dilation rates and receptive fields, 

and the results are concatenated along the channel axis to 

form the temporal-aware representation 

𝚵𝜏 =  Concat [CSA(1)(𝚵𝑠
(1)

), … , CSA(4)(𝚵𝑠
(4)

)] 

For a spatial-temporal token 𝝃𝑞 ∈ ℝ
Γ

4
×1×1×1

 , the 

constrained attention neighborhood 𝚺𝑞 is defined as 

𝚺𝑞 = {𝜿(𝜈′, 𝜂′, 𝜔′)}𝜈′,𝜂′,𝜔′∈𝒩𝑟
 

where 𝜿 ∈ ℝ
Γ

4
×1×1×1

 is the key embedding, and 𝒩𝑟 defines 

a local cube neighborhood determined by radius 𝜌  and 

dialation 𝛿 over 𝒩, ℋ, 𝒲. 
The temporal affinity score 𝜍𝑞 between 𝝃𝑞 and its neighbors 

is calculated using a scaled dot-product formulation 

𝜍𝑞 = 𝑓(𝝃𝑞 , 𝚺𝑞) = ∑  

𝜈′,𝜂′,𝜔′∈𝒩𝑟

𝝃𝑞 ⋅ 𝜿(𝜈′, 𝜂′, 𝜔′)⊤ 

With these weights, the augmented temporal representation 

𝝃𝑞
′  is computed as the weighted sum over the value 

embeddings 𝒗 ∈ ℝ
Γ

4
×1×1×1

 as 

𝝃𝑞
′ = ∑  

𝜈′,𝜂′,𝜔′

𝜍𝑞 ⋅ 𝒗(𝜈′, 𝜂′ , 𝜔′) 

This formulation facilitates selective attention to salient 

motion patterns localized in constrained spatial-temporal 

neighborhoods, thereby enhancing the model's robustness to 

jitter and occlusion. 

The resultant temporal tensor 𝚵𝜏  is reintegrated into the 

main segmentation pipeline, serving as a complementary 
input to the enhanced Segment Anything decoder, which 

combines high-resolution boundary prediction and mask 

generation for spaceborne object parsing. 

B. Spatial–Temporal Feature Integration for Aerospace 

Visual Intelligence 

In aerospace robotics—particularly in on-orbit operations 
such as autonomous servicing or debris mitigation—the 

integration of spatial and temporal cues is imperative for 

robust visual perception under dynamic and uncertain 

orbital conditions. The Spatial–Temporal Feature Module 

(STFM) in our Visual-Based Space Debris Segmentation 

Using an Enhanced Segment Anything Framework is 

designed to cohesively fuse multi-resolution spatial 

encodings from the Spatial Feature Extraction Module 

(SFEM) with temporal dynamics captured by the Temporal 

Fusion Module (TFM). 

To compensate for spatial fidelity loss induced by deep 

convolutional hierarchies and aggressive downsampling, 
the STFM adopts a dual-stream refinement architecture 

comprising a cascade of four progressive fusion blocks. 

Each refinement stage assimilates (i) the top-down spatial 

abstraction 𝚯↓
𝜄  propagated from the preceding decoder level, 

and (ii) the corresponding bottom-up high-resolution 

feature 𝚯↑
𝜄  acquired from SFEM [42]. 
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This bidirectional fusion schema mitigates spatial 

degradation by enabling the recovery of fine-grained visual 

structures—crucial for discerning the contours of irregular, 

fast-moving debris in satellite imagery. The integration 

process in each STFM block follows a structured three-step 

pipeline.  

The first step is feature concatenation, which means that the 

spatial tensor pair 𝚯↓
𝜄 ∈ ℝ𝜁×ℋ×𝒲  and 𝚯↑

𝜄 ∈ ℝ𝜁×ℋ′×𝒲′
 are 

concatenated after bilinear upsampling (if needed) to align 

spatial resolution as 

𝚽𝜄 = Concat(𝚯↓
𝜄 , 𝒰(𝚯↑

𝜄 )) 

where  𝒰(⋅) denotes bilinear upsampling to match ℋ, 𝒲. 

Then, we need to solve refinement via convolutional 

pprojection. The fused tensor 𝚽′  is passed through a 

refinement convolutional operation ℱref composed of a 3 ×
3 kernel and 16 output channels as  

𝚯fused 
𝜄+1 = ℱref(𝚽𝜄) 

This step enhances semantic integration while preserving 

discriminative spatial structure. 

In the end, we should deal with the problem that temporal 

augmentation and final prediction. The temporally-enriched 

output from the TFM, denoted as 𝚵𝜏 ∈ ℝ𝜁×ℋ×𝒲  , is 

projected and fused with the spatial refinement result as 

𝚿 = 𝚯fused 
4 + 𝒫(𝚵𝜏) 

where 𝒫(⋅)  denotes a1 × 1  projection layer aligning the 

channel dimensions. The final saliency or segmentation 

prediction is generated via a lightweight decoder composed 
of two convolutional layers as 

𝑴̂ = 𝒟(𝚿) ∈ ℝ1×ℋ×𝒲 

The fused map 𝑴̂ represents the model’s confidence over 

pixel-level debris regions, offering high-resolution mask 

predictions suitable for downstream control and planning in 

space robotic platforms. This hierarchical fusion strategy is 

specifically engineered to maintain high responsiveness 

under latency constraints and environmental uncertainties 

encountered in real-world aerospace robotic missions. 

C. Centroid Localization for Salient Debris Targets 

Upon the successful delineation of salient regions by the 

enhanced Segment Anything framework, the subsequent 

objective is to localize the energy-weighted centroid of 

segmented debris within the satellite’s optical focal plane. 

This centroid provides a pivotal descriptor for both 

performance evaluation and spatial indexing, enabling 

downstream modules in aerospace robotic systems to track 

or intercept the target effectively in real time. 
The methodology adopted herein utilizes an intensity-

weighted spatial averaging scheme, which computes the 

center of mass of the segmented debris mask based on 

pixel-wise luminance responses. Let the segmented region 

𝒮 ⊂ ℝ𝜇×𝜈  be the spatial support of the debris, and let 

ℐ(𝜉, 𝜓) denote the grayscale or probability intensity at pixel 

coordinate (𝜉, 𝜓), with 𝜉 ∈ [𝜉1, 𝜉2] and 𝜓 ∈ [𝜓1 , 𝜓2].  
The centroid (𝜉𝑐 , 𝜓𝑐) of the debris region is computed as 

𝜉𝑐 =
∑  

𝜉2
𝜉=𝜉1

∑  
𝜓2
𝜓=𝜓1

𝜉 ⋅ ℐ(𝜉, 𝜓)

∑  
𝜉2
𝜉=𝜉1

∑  
𝜓2
𝜓=𝜓1

ℐ(𝜉, 𝜓)
 

𝜓𝑐 =
∑  

𝜉2
𝜉=𝜉1

∑  
𝜓2
𝜓=𝜓1

𝜓 ⋅ ℐ(𝜉, 𝜓)

∑  
𝜉2
𝜉=𝜉1

∑  
𝜓2
𝜓=𝜓1

ℐ(𝜉, 𝜓)
 

where (𝜉𝑐 , 𝜓𝑐) ∈ ℝ2  denotes the energy-weighted 

centroid coordinate, and ℐ(𝜉, 𝜓) is the intensity value of the 

pixel at location (𝜉, 𝜓) ; [𝜉1, 𝜉2] and [𝜓1, 𝜓2]  define the 

effective bounds of the salient mask in horizontal and 

vertical directions respectively. 

This formulation assumes that higher pixel intensities (e.g., 

due to specular reflection, highlight from shape priors, or 

probabilistic segmentation confidence) correlate with debris 

localization certainty. Consequently, the centroid lies nearer 

to pixels of greater saliency, thereby achieving robust 

localization under partial occlusion or non-uniform debris 
textures—conditions prevalent in orbital scenarios. 

Although classical centroiding techniques are prone to 

perturbations from background noise or segmentation spill-

over, our architecture incorporates precise attention-based 

denoising and saliency refinement modules, which ensure 

that the input to this calculation is a noise-suppressed binary 

or probabilistic mask. Hence, the centroid output remains 

stable and accurate even in cluttered orbital backgrounds, 

satisfying real-time constraints for spaceborne robotic 

manipulation and target tracking pipelines. 

D. Spatial Feature Enhancement for Orbital Object 

Parsing 

In the domain of aerospace robotics, particularly during 

space debris perception and segmentation, the accurate 

encoding of spatial context becomes indispensable—

especially when detecting small, visually ambiguous orbital 

targets. These targets often occupy marginal pixel regions 
and suffer from poor contrast against cosmic backgrounds 

[43]. To resolve this, our Visual-Based Space Debris 

Segmentation Using an Enhanced Segment Anything 

Framework introduces a multi-scale spatial feature 

enhancement module that emphasizes contextual scale-

awareness at early convolutional stages. 

To enrich the feature maps with multi-scale semantic cues 

while preserving lightweight computation, we adopt a 

modified Lightweight Atrous Spatial Pyramid Pooling (LR-

ASPP) strategy. Each LR-ASPP unit is composed of a large 

receptive field pooling kernel paired with a 1 × 1 depth-

wise separable convolution, designed to capture global 

contextual dependencies without significantly inflating the 

computational burden—critical for deployment on resource-

constrained spaceborne robotic platforms. 

Let 𝚲𝑘 ∈ ℝ𝜍×ℎ×𝑤  denote the spatial feature maps at the 𝑘th  

block from the spatial feature extraction module (SFEM). 

The context-aware modulation signal generated by the LR-

ASPP module is denoted as 𝚼𝑘
𝜄 ∈ ℝ𝜍×ℎ×𝑤. To obtain scale-

aware representations 𝚽𝑘
0, a residual excitation operation is 

applied as 

𝚽𝑘
0 = (𝐫 + 𝚼𝑘

𝑙 ) ⊙ 𝚲𝑘 

where ⊙   represents Hadamard (element-wise) 

multiplication, and r is a broadcast tensor of ones ensuring 

additive modulation. This formulation selectively 

emphasizes salient regions based on context relevance, 

enhancing the feature discriminability of faint debris 
signatures. 

To mitigate feature degradation and attenuation near object 

boundaries, especially due to hierarchical downsampling, a 

residual skip-connection module is attached to each SFEM 

block. This module differs from conventional skip 

connections by not only bypassing features but also 

performing channel-aligned transformation and reactivation 

to maintain spatial coherence. Let 𝚫𝑘 be transformed 

𝚫𝑘 = 𝒢𝑘(𝚲𝑘), 𝒢𝑘 : ℝ𝜍×ℎ×𝑤 → ℝ𝜍′×ℎ′×𝑤′
 



International Journal of Innovative Research in Computer Science and Technology (IJIRCST) 

Innovative Research Publication   83 

where 𝒢𝑘  denotes a learnable transformation consisting of 

three convolutional layers that (i) downsample spatial 

dimensions if necessary, (ii) align channel semantics across 

hierarchical layers, and (iii) embed long-range 

dependencies into intermediate features. This facilitates 

smooth gradient flow and reinforces semantic preservation 

through the spatial–temporal fusion stage. 
The fused spatial features, enhanced by residual modulation 

and context-aware scaling, are subsequently fed into the 

Spatial–Temporal Feature Fusion Module (STFM). This 

promotes robust debris saliency preservation and improves 

the localization accuracy of minute and occluded targets in 

real-time orbital scenes. 

IV.    EXPERIMENT RESULTS 

The entire framework was evaluated on a workstation 

equipped with an Intel Core i9-8700K processor and 128 
GB of RAM. All experiments were executed in a controlled 

simulation environment designed to emulate realistic 

optical conditions encountered by aerospace robotic 

platforms during visual-based inspection and space debris 

monitoring missions. 

In visual perception for aerospace robots, space debris is 

often captured as transient luminous artifacts—either 

compact (point-like) or elongated (streak-like)—depending 

on exposure duration and relative motion in image 

sequences. To train the segmentation model effectively 

under diverse visual dynamics, synthetic debris scenarios 
were created. The debris is confined to a fixed spatial 

envelope of 50 × 50  pixels, with its movement vector θ 

sampled uniformly from the interval 
(−90∘, 180∘)mimicking real-world motion captured in low 

Earth orbit (LEO). This motion originates from the bottom 

of the frame toward the top, adhering to the typical 

dynamics observed by orbital imaging sensors. 

Figure 1 presents the architectural pipeline of the proposed 

method to enable robust segmentation in orbit. The system 

begins with the input of optical satellite imagery containing 
space debris scenes. The image undergoes feature encoding 

through a convolutional backbone, generating a hierarchical 

visual feature map. Simultaneously, a topic backbone 

processes language-conditioned queries related to target 

objects. The outputs of both streams are fused in a **cross-

modality decode, which enables language-guided region 

proposal selection. The Region Proposal Network (RPN) 

further refines these proposals, feeding them through 

RoIAlign and multiple convolutional layers to generate 

segmentation masks. These masks are highly responsive to 

spatial cues and contextual prompts, enabling accurate 

localization of debris objects even under challenging low-
SNR conditions. The final output consists of segmented 

regions overlaid on the input image, clearly identifying 

multiple debris fragments around the satellite. This dual-

path architecture effectively bridges vision-language 

alignment and spatial precision, making it suitable for real-

time deployment on aerospace robotic platforms performing 

autonomous visual inspection and debris avoidance in low 

Earth orbit. 

Figure 2 illustrates the confusion matrix representing the 

classification performance of the proposed Visual-Based 

Space Debris Segmentation framework, which integrates an 
enhanced Segment Anything Model (SAM), across 12 

distinct object categories. The dataset includes high-SNR 

and low-SNR space debris samples alongside various 

satellite types and background clutter, enabling robust 

benchmarking in orbit-like imaging conditions. Each entry 

at position (𝑖, 𝑗)  indicates the number of times a ground 

truth object of class iii was predicted as class 𝑗 , with 

stronger diagonal dominance signifying better classification 

performance. Notably, categories such as class 1–4 and 7–

11 exhibit strong diagonal responses, suggesting high 
precision and minimal inter-class confusion, while class 5 

shows increased misclassification, primarily distributed 

across neighboring classes. This outcome is expected due to 

the lower signal-to-noise ratio and motion ambiguity in that 

category. The use of the coolwarm color scheme enhances 

the contrast between high-frequency correct predictions 

(highlighted in red) and sparse off-diagonal 

misclassifications (in blue), visually reinforcing the model’s 

segmentation fidelity. Overall, the confusion matrix 

validates the segmentation framework’s robustness and 

generalization across various orbital targets, supporting its 
applicability for deployment in autonomous aerospace 

robotic systems. 

 

Figure 1: Architecture of the Proposed Visual-Based Space Debris Segmentation Framework Integrating Enhanced Segment 

Anything and Language-Guided Detection
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Figure 2: Confusion Matrix of Visual-Based Space Debris Segmentation Using Enhanced SAM  

Framework on Synthetic Orbital Dataset

Figure 3: Confusion Matrix Visualization of the Enhanced Segment Anything-Based Space Debris Segmentation Model 

Using Magma Colormap 

Figure 3 presents the confusion matrix of the proposed 

Visual-Based Space Debris Segmentation Framework, 

which integrates an enhanced Segment Anything model 

with language-guided detection. The matrix illustrates 

classification performance across 12 object categories, with 

strong diagonal dominance indicating high accuracy in most 

classes. Notably, class 7 achieves the best performance, 

while classes 5 and 6 show moderate confusion due to 
visual similarity. The magma colormap enhances contrast, 

making correct and incorrect predictions visually distinct. 

This result confirms the model's robustness in segmenting 

space debris and satellites under challenging orbital 

imaging conditions. 

Figure 4 shows the distribution of Intersection over Union 

(IOU) values produced by the proposed Visual-Based Space 

Debris Segmentation Framework. The histogram reflects 

the model’s mask quality across thousands of test samples. 

A clear skew toward higher IOU values (above 0.75) 
indicates that the enhanced Segment Anything model 

consistently produces accurate segmentation masks, with a 
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peak frequency near IOU = 0.9. Fewer samples fall below 

0.5, suggesting limited misalignment between predictions 

and ground truth. This result highlights the framework’s 

strong performance in accurately delineating space debris in 

visually complex orbital environments.  

Figure 4: Distribution of IOU Scores for Space Debris Segmentation Using the Enhanced  

Segment Anything Framework 

Figure 5: Mean Filter Residue Along Image Rows 
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Figure 6: Mean Filter Residue along Image Columns 

Figure 5 and Figure 6 illustrate the residual noise 

distributions after applying mean and median filtering 

techniques to simulated space debris images along both row 

and column directions. The plots reveal how different 

spatial filters suppress high-frequency noise in pixel 

intensity (measured in DN). The mean filters demonstrate 

moderate noise suppression, but exhibit more fluctuation, 

especially in column-wise filtering. In contrast, the median 

filters provide stronger noise attenuation, particularly for 

impulse-like variations, yielding smoother residue patterns. 

This analysis validates the effectiveness of median filters 
for preprocessing noisy debris imagery in the proposed 

segmentation pipeline, contributing to more reliable mask 

generation under challenging orbital visual conditions.  

V. CONCLUSION 

This work introduces a novel visual segmentation 

framework tailored for autonomous aerospace robotic 

systems operating in open-set orbital environments. By 

enhancing the Segment Anything Model (SAM) with 

clause-aware prompts from Grounding DINO, transformer-
based ViT-Matte edge refinement, and spatial–temporal 

fusion, the proposed method demonstrates significant 

improvements in space debris localization accuracy. 

Experimental results on synthetic orbital datasets confirm 

robust segmentation performance, with high IOU 

distributions and strong diagonal dominance in confusion 

matrices. The framework’s ability to generalize across 

diverse debris morphologies and SNR levels—without 

retraining—establishes its utility for real-time, vision-based 

tasks in low Earth orbit. This approach paves the way for 

integrating foundation models into mission-critical 
aerospace applications such as debris monitoring, proximity 

operations, and satellite servicing. Future extensions may 

incorporate multi-modal fusion or onboard deployment 

optimizations for in-situ space operations. 
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