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ABSTRACT- As artificial intelligence (AI) theory 

becomes more sophisticated and its utilization spreads across 

daily life, education, and professional settings, the adoption 

of AI for medical diagnostic and service purposes stands as 
a logical progression in the evolution of medical 

technologies. This document outlines a novel approach to 

detecting cancer cell targets using a deep learning-based 

system, marking a critical step towards integrating AI into 

cancer diagnostics. The process of detecting cancer cell 

targets entails the localization of cell types within images of 

cells. By capitalizing on the strengths of the YOLOv5 

model—a deep learning-driven, end-to-end, real-time object 

detection framework known for its efficiency, superior 

performance, adaptability, and user-friendly PyTorch 

integration—this research presents an enhanced YOLOv5 
model incorporating both a feature pyramid network and the 

original YOLOv5 architecture. The ultimate aim is to 

facilitate precise detection of targets in cancer cell images. 

The experimental data demonstrate the system's negligible 

error rate in detection, swift processing capabilities, and 

exceptional reliability. 

KEYWORDS- Deep Learning, Target Detection, Neural 

Network, Cancer Cell Detection, YOLOv5. 

I.  INTRODUCTION 

Cancer poses a significant global health challenge, with early 

detection and diagnosis being crucial for patient survival 

rates and treatment outcomes. In the field of medical 

imaging, cancer cell detection is a key task that involves 

accurately identifying potential cancerous regions from 

complex cell images, allowing for timely therapeutic 

interventions. 

Traditional methods for cancer cell detection often rely on 

subjective judgment and experience of physicians, leading to 
limitations such as time-consuming manual operations and 

susceptibility to subjective bias. However, with the 

advancement of deep learning technology, particularly in the 

field of object detection [1][2][3][4], automated cancer cell 

detection methods based on deep learning are becoming an 

increasingly prominent trend[5][6]. 

However, conventional object detectors cannot be applied 

directly to cancer cell detection due to various challenges, 

one of which arises from the limited inter-class variation 

observed between the malignant and the benign cancer cells 

[7]. Apart from algorithmic challenges, automated cancer 

diagnosis also suffers from difficulties in real-world 

deployments. 

Medical devices for cancer diagnosis are deployed in vast 
numbers in challenging environments and have a high 

demand in terms of robustness. Such an elevated complexity 

of cancer diagnosis requires the awareness of platform and 

environmental constraints and optimized utilization of 

computational resources [8] [9]. 

Acknowledging the challenges inherent in cancer cell 

detection, we propose an improved lightweight YOLOv5 

object detection network tailored for cancer cell images[10].  

The objective is to strike a balance between energy 

consumption, accuracy, and speed. The contributions of this 

work are delineated as follows: 

Our method fully leverages YOLOv5's fast convergence rate 
on datasets and strong model customizability[11]. Through 

careful design and optimization, it significantly reduces the 

number of model parameters, lowers storage overhead, and 

notably accelerates the inference, while maintaining 

detection accuracy. Our method shows good generalizability, 

not only holding significant implications for the field of 

cancer cell detection but also providing valuable insights and 

references for automated detection tasks in other medical 

imaging domains[12][13][14]. 

II.  CANCER CELL TARGET DETECTION 

SCHEME 

The cancer cell detection framework consists of several key 

components: a module for augmenting images of cancer cells 

to create an improved collection of images[15]; a 

preprocessing module that assigns labels to images of both 

cancerous and non-cancerous cells in this enhanced 

collection, tagging them with both category and spatial labels 

to prepare a processed dataset; a module designed to 
determine anchor aspect ratios for this dataset[16]; a module 

for predicting bounding boxes and identifying cancer cells 

simultaneously by extracting image features through a 

Feature Pyramid Network (FPN) [17] consisting of Cross 

Stage Partial Network (CSPNet) [18] and Perceptual 
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Adversarial Network (PAN) [19]; and a loss function value 

(Generalized Intersection over Union, GIoU_Loss) for 

assessing the detection system's effectiveness by computing 

the difference between the predicted bounding boxes and the 

ground truth and then updating the network’s parameters via 
back-propagation. 

The enhanced YOLOv5 model, an advancement from 

YOLOv4, presents a significant improvement due to its 

dynamic scaling capability across various channels [20]. 

This advanced cancer cell detection framework utilizes the 

YOLOv5 model as its core, leveraging multi-scale features 

for enhanced detection. Initially, the system processes 

images of cancer cells for data augmentation[21]. 

Subsequently, it labels images of cancer cells and other types 

of cells within the augmented dataset with category and 

spatial information, organizing them into distinct sets for 

training, cross-validation, and performance evaluation[22]. 
Following this organization, the system calculates target 

anchor boxes for cancer cells, conducts object detection 

through an FPN with multiple CSP blocks, and ultimately 

assesses the detection performance using the GIoU_Loss 

value[23]. This comprehensive process ensures the 

generation of reliable cancer cell detection outcomes, as 

depicted in Figure 1. 

 

Figure 1: Schematic Diagram of the Cancer Cell Target Detection System

A. Enhanced YOLOv5 Network Model 

Utilizing the strengths of residual structures from the Deep 

Residual Network (ResNet), the YOLOv5 enhances its 
network depth while preventing convergence difficulties 

linked to gradient vanishment. This improvement is made 

possible by adding a shortcut path between the input and the 

output. This shortcut path omits the pooling and fully 

connected layers in the middle of the block, instead 

employing adjustments in convolutional kernel strides for 

modifying tensor sizes[24]. Echoing the design principles of 

its predecessors, it scales down the feature output to one 

thirty-second of the input size, necessitating that the input 

image's resolution be divisible by 32. The model also applies 

methods like resizing and merging to increase tensor sizes, 

facilitating more comprehensive information extraction[25]. 
This merging process occurs in the intermediate and later 

stages of Darknet-53, followed by an upsampling 

process[26]. The numeral 53 in Darknet-53 denotes the 

presence of 53 convolutional layers out of the first 74, with 

the subsequent 22 layers serving as residual connections; the 

layers from 75 to 105 are dedicated to feature fusion layers, 

implementing multiscale detection capable of producing 

outputs at three different scales - 76x76, 38x38, and 19x19 - 

for identifying objects of varying sizes, with each scale 

predicting three anchor boxes. 

Outlined in Figure 2, the refined YOLOv5 network structure 

developed in this research is segmented into four principal 
sections: the input segment, the central backbone network, 

the Neck portion, and the output stage for predictions 

[27][28]. At the input phase, techniques such as Mosaic data 

augmentation and adaptive anchor box calculations are 

employed to visualize anticipated positive sample anchor 

boxes[29]. The backbone network is enhanced with Focus 

and CSP architectures, supporting the creation of models of 

different sizes and complexities. The Neck section makes use 

of an integrated FPN+PAN architecture and the prediction 

stage operates through the GIoU_Loss mechanism. 
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     Figure 2: Network Structure Model of YOLOv5 

This upgraded YOLOv5 model presents several key 

improvements:  

 It incorporates a strategic approach to matching 

positive sample anchor boxes in proximity, which 

boosts the count of positive samples. 

 It supports the development of models with diverse 

levels of complexity via adjustable configuration 

parameters. 

 It improves the overall system performance with 

inbuilt strategies for hyperparameter tuning. 

 It leverages Mosaic data augmentation to enhance 

the detection accuracy for smaller objects. 

B. Mosaic Data Enhancement 

Enhancing the model's ability to generalize and mitigating 

overfitting can be significantly achieved through data 

augmentation[30][31]. Considering the diminutive nature of 

cancer cells and the limited availability of training datasets 

for their detection, which are further compounded by the high 

costs of labeling new data, data augmentation serves as a 

critical tool. It artificially expands the training dataset 

through various transformations or modifications[32]. 

Enhancing the diversity of input images in this way, the 
targeted detection model becomes more adept at handling 

images captured in different settings. The YOLOv5 input 

stage capitalizes on Mosaic data enhancement's benefits by 

diversifying the dataset via random scaling, placement, and 

cropping for amalgamation, especially aiding in the 

enhancement of detection contexts for small entities and 

improving the detection rates for diminutive targets such as 

cancer cells [33]. 

C. Dynamic Anchor Box Optimization 

The YOLOv5 framework allows for the presetting of anchor 

box dimensions tailored to specific datasets. During the 

training phase, the model uses these pre-set anchor boxes to 

generate predicted boxes, then compares these to the actual 

boxes to identify discrepancies. Adjustments to the network's 

parameters are made iteratively based on these 

discrepancies[34][35]. YOLOv5 incorporates the initial 

anchor box dimensions directly into its code, dynamically 

deriving the most suitable anchor box dimensions for a 

dataset with each training iteration [36]. This procedure 

involves:  Applying random data enhancements and 

transformations to all bounding boxes in the set; Calculating 

optimal recall rates for bounding boxes using the initial 
anchor box dimensions, through a process that computes the 

aspect ratio values for n bounding boxes and compares these 

against 9 anchor box dimensions, selecting the closest 

matches and calculating a matching ratio. This process aims 

to achieve the highest possible recall rate;  Should the recall 

rate meet or exceed 0.98, further optimization is deemed 

unnecessary. If it falls below this threshold, anchor box 

dimensions are refined using a combination of genetic 

algorithms and k-means clustering, with the aim of achieving 

the highest recall rate. 

D.  Multilevel Prediction via FPN 

The Feature Pyramid Network (FPN) employs a dual 

approach, integrating bottom-up and top-down 

methodologies to merge lower-level detail features with 

higher-level abstract features, thus enriching the feature 

map's detail and resolution[37]. In the context of detecting 

cancer cell targets, this approach surpasses the capabilities of 
the SSD (single shot multibox detector) algorithm by 

allowing each layer within the FPN to operate independently, 

as illustrated in Figure 3. FPN enhances predictions by 

conducting separate analyses on each feature layer, blending 

upsampling with features from preceding layers to extract 

deeper insights, and applying a 3x3 convolution to each 

combined output to mitigate the effects of upsampling 

aliasing[38]. The FPN execution unfolds in three stages: 

Generating variably-sized features in a bottom-up fashion; 

Refining these features in a top-down manner;  Enabling the 

extracted features to be linked with the varying dimensions 

output by the convolutional neural network (CNN). 
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Figure 3: Implementation of FPN in the Cancer Cell 

Detection Model 

E. Enhancements through Perceptual Adversarial 

Network (PAN) 

Building on the FPN, the introduction of the Perceptual 

Adversarial Network (PAN) introduces a new layer to the 

pyramid, aimed at overcoming FPN's limitations in 

conveying location information, which primarily boosts 

semantic detail[39]. By channeling lower-layer detail 

features upward, PAN creates a composite structure enriched 

with both semantic and locational insights [40]. PAN 
differentiates between the model's outputs and actual images, 

refining detection capabilities through continuous feedback. 

Perceptual loss evaluates these differences by extracting 

output and real image features using a pre-trained image 

classification network, focusing on high-level attributes like 

content and texture[41]. Minimizing the disparities between 

these features, the model learns to transform the input image 

into an output that mirrors the actual image's high-level 

characteristics. 

F. Optimization through GIoU_Loss 

The Generalized Intersection Over Union (GIoU_Loss) loss 

function introduces a solution to the gradient vanishing 

dilemma in Intersection Over Union (IoU) 

calculations[42][43]. It provides a methodology for assessing 

bounding box prediction loss, especially in scenarios where 

candidate boxes do not intersect, ensuring the loss does not 

default to 0. Loss functions play a vital role in evaluating the 
performance of deep learning prediction models by 

quantifying the difference between predicted and actual 

outcomes[44]. In object detection, comparing the predicted 

bounding boxes against the actual annotated boxes is 

essential for computing loss and assessing the detection 

model's efficacy. 

III.  EXPERIMENTAL DESIGN 

The detection model initiates its process with a feature 

extraction network, which is tasked with generating feature 
maps at varying scales. Utilizing these maps, a multi-layered 

predictive network identifies the positions and classifications 

of targets across different scales [45]. The endeavor to detect 
smaller targets encounters specific technical hurdles: 

 The scarcity of usable features, as smaller targets 
comprise a smaller fraction of the dataset. Due to their 

diminutive size, these targets embody less information 

and suffer from reduced resolution, complicating the task 

of distilling unique features. Furthermore, they pose 

annotation challenges and are particularly vulnerable to 

errors. 

 The need for precise localization. Small targets are highly 

susceptible to environmental changes, making accurate 

localization critical. A minor shift, even by one pixel, in 

prediction can substantially affect the outcome for small 

targets. 

 The problem of sample imbalance and target clustering. 

The practice of setting thresholds for classifying anchor 

boxes as positive samples can cause imbalances across 

various target sizes. Small targets tend to cluster, leading 

to potential omissions of these targets by the predictive 

network as a result of non-maximum suppression 

eliminating correct predictions or due to the closeness of 
the boxes, which complicates model convergence. 

To address the intricacies of intelligent detection of cancer 

cell targets, the feature extraction network is designed to 
embody several key features: 

 It boasts potent capabilities for extracting nonlinear 
features. 

 The network architecture is crafted to minimize 

computational complexity, facilitating rapid operation. 

 It demonstrates enhanced robustness, mitigating the risks 

of training issues such as gradient vanishing or 
exploding. 

For this study, the dataset is constituted of 2,000 breast 

cancer images, 2,000 cervical cancer images accessible via 

official platforms, 2,000 images of healthy cells from a 

hospital’s pathology department, and 1,000 images depicting 

a mixture of healthy and cancerous cells, amounting to a total 

of 7,000 cell images. Following data augmentation, the 

dataset expanded to 10,000 images. A split of 80% of these 

images is utilized for training purposes, with the remaining 

20% earmarked for validation. Performance evaluation 

employs standard precision (P) and recall (R) metrics to 

determine the Average Precision (AP), alongside the F1-
score, which serves as an additional critical performance 

metric [46]. The methodology behind these metrics is 

detailed as follows: 

𝑅 =
𝑇

𝑇 + 𝐹
                                          (1) 

𝑅 =
𝑇

𝑇 + X
                                          (2) 

F1-score =
2 × 𝑅 × 𝑃

𝑅 + 𝑃
                             (3) 

In the formula, T represents true positives, F denotes false 

negatives, and X stands for false positives. Table 1 

illustrates the detection result metrics for the cancer cell 

target detection model. 

Table 1: Target Detection Result Metrics 

 Recall AP Precision F1-score 

Result 0.807 0.77 0.911 0.867 

The effectiveness of detecting cell images containing varying 

numbers of cancer cells is shown in Figure 4. These images 

include normal cell images, cell images with a small number 

of cancer cells, and cell images with a mix of several types 

of cancer cells among normal cells. 
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Figure 4: Cancer Cell Target Detection Results 

IV.  CONCLUSION 

This study stands at the forefront of the intersection between 

deep learning and the medical field, introducing an improved 

lightweight YOLOv5 target detection network that 

successfully addresses the key technical challenges in 

implementing a cancer cell detection system. Our approach 

not only accurately identifies the presence of cancer cells in 

complex cell images but also provides detailed information 

on their location and size, thereby offering crucial decision 

support for subsequent cancer diagnosis and treatment. 

By fully leveraging the rapid convergence and high 

customizability of YOLOv5, this project has effectively 
resolved a range of issues traditionally encountered by target 

detection networks in practical medical applications, such as 

excessive model weight parameters, high storage 

consumption, and the difficult balance between speed and 

accuracy. Moreover, the improved lightweight YOLOv5 

network significantly reduces model complexity and 

operational time while maintaining high detection accuracy, 

substantially enhancing the practicality and acceptability of 

cancer cell detection. 

Future work will focus on further optimizing the model 

structure to lower computational costs while maintaining or 

even improving detection accuracy. Additionally, 
considering the diversity of cancer types, expanding the 

model’s adaptability to cover more types of cancer diagnoses 

is our next major research direction. We also plan to 

collaborate with clinical medical institutions to more broadly 

apply the outcomes of this study in actual cancer detection 

and diagnosis, contributing to the early detection and 

treatment of cancer patients. 

Through this research, we have demonstrated the immense 
potential of artificial intelligence technology in the 

healthcare field, especially in the crucial area of cancer 

diagnosis. We believe that as technology continues to 

advance and more deeply integrates with medical practice, 

deep learning-based cancer cell detection systems will play 

an increasingly important role in the future, bringing hope 

and light to cancer patients worldwide. 
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