

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

 ISSN (online): 2347-5552, Volume-11, Issue-4 July 2023
https://doi.org/10.55524/ijircst.2023.11.4.14

Article Id IRPP1402, Pages 78-81

www.ijircst.org

Innovative Research Publication 78

FPGA Implementation of High Throughput Lossless Canonical

Huffman Machine Decoder

P. Uday Kumar1, K.Vineela2, J.venkatavamsi3, N.Rajesh4, R.V. Lokesh kumar5, and P.Hyndavi6

1Assistant Professor, Department of Electronics and Communication Engineering, PACE Institute of Technology and Sciences,
Ongole, Andhra Pradesh, India

2,3,4,5,6UG Students, Department of Electronics and Communication Engineering, PACE Institute of Technology and Sciences,

Ongole, Andhra Pradesh, India

Correspondence Should Be Addressed to P.Uday Kumar: udaykumar_p@pace.ac.in

Copyright © 2023 Made P. Uday Kumar et al. This is an open-access article distributed under the Creative Commons Attribution License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- Because there are more data bits and

memory operations in modern digital networks, data

transport and reception are more complicated, resulting in

more data loss and lower throughputs. As a result, the

suggested work of this study uses the Canonical Huffman

compression approach to deliver lossless data compression

with minimal memory architecture. The Huffman machine
will present a memory-efficient design that is lossless and

supports multi-bit data compression [1]. Here, utilizing

variable length and the Canonical Huffman encoding

method, this methodology will show input as 640 data bits,

compressed output as 90 data bits, and de-compressor 90

data bits to 640 data bits using the Canonical Huffman

decoding method. Finally, this work will be synthesized on

a Vertex FPGA and presented in Verilog HDL, with results

for area, delay, and power.

KEYWORDS- Data Bits, Decoding, Decompression,

Logic Gates, Throughput, Canonical Huffman Compression

in Verilog HDL

I. INTRODUCTION

D.A. Huffman created the Huffman code in 1951, and they

have been in use ever since. Huffman sought the most

effective way to represent a sign so that it might be encoded

into a smaller form. He came up with a straightforward

solution to this issue that earned him the top spot in
Information Theory among all time's technical achievers.

Huffman code is one of the essential concepts that those

working in the fields of information technology and data

communications frequently used, according referring to

Donald E. Knuth, the author of the multi-volume work "The

Art of Computer Programming." In relation to creating

compact prefix codes that represent symbols from an

alphabet, the Huffman approach is not unique. co-author of

a lesser-known effective form encoding of entropy is

known to be Robert Fano, who was College of D.A.

Huffman professor at the time [2]. After this creators,
Robert Fano and Claude Shannon,the technique is known as

Shannon-Fano. Although Huffman codes are theoretically

close to being ideal, in practice they perform significantly

less well, especially when there are fewer symbols to

encode. This will be covered in Section III. In order to find

the best progressive codes and coding techniques for this

challenge, new Huffman codes that adhere to predetermined

rules have recently been developed. transferring, storing,

and retrieving the data necessary for the input symbol

reconstruction are steps 1 and 2 that can be optimally

solved using these codes, which are known as the Canonical

Huffman codes. Such features define the sequential nature
of the canonical Huffman codes. The most significant

characteristic of these codes—which will be covered in

greater detail in this article—has fundamentally altered the

paradigm [3] of Huffman coding. When the amount of bits

per codeword is given, this code attribute, known as the

consecutive value property, enables the majority for the

automatic generation of the standard Huffman codes

created in sequence order.

II. LITERATURE SURVEY

We offer a brand-new approach to decoding canonical

Huffman codes that is created to rewrite several in symbols

a single decoding process. The traditional canonical

Huffman decoding is the one employed our encoding

method is designed for speed and provides excellent data

throughput; in our experiments, we were able to

decompress highly redundant data at a rate of more than

2.1GiB/s. Our approach operates at extremely fast speeds

while requiring very little storage for the decoding tables

[4]. We will also demonstrate that the memory

requirements and decoding table construction times are

minimal for short-form canonical Huffman code words this
stretch up to 12 bytes. Data compression speed

requirements are increasing as a result of the quick

advancements in science and technology. General-purpose

computers or DSP chips using software to develop image

compression technology cannot currently meet the demands

for real-time processing speed. A new kind of digital circuit

is called a Field Programmable Gate Array (FPGA). Every

clock cycle, each logic gate in the FPGA device does a

logical operation. FPGA is essentially a large-scale parallel

hardware device, as is obvious. The parallel Huffman

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 79

coding and FPGA processing characteristics are both used

in this paper.

III. EXISTING SYSTEM

HUFFMAN coding has several applications in the fields of

data compression, image processing, audio compression,
and data security. A crucial step in the Huffman coding

procedure, the "code word table" accurately displays the

data compressible space [5]. The input symbols must first

be pre-scanned to create a precise code word table before

compression can start. The double processing of the input

data by this approach results in a slow coding speed and

high hardware expense shown in Fig 1. By using a known

code word table, the pre-scan procedure is often eliminated

in commercially available algorithms. However, the

proposed code word table is only applicable to input data

whose specific frequency distribution matches that of the

table. Other places have a lower compression ratio. It was

recommended to use a known code word table and an

efficient memory allocation method for Huffman coding. It

can greatly reduce the computational workload required to

allocate memory for the Huffman table with little

performance loss. But it takes a lot of clock cycles to seek

the Huffman code from the Huffman table. A unique data

structure was created to improve the efficiency of Huffman
coding. Nevertheless, a series of difficult computations

were used to identify the data structure's attributes, leading

to a low clock frequency [6]. A PLA solution made fast

Huffman coding possible, however maintaining the code

word table for this technique frequently takes a lot of

software as shown in Fig 2. Additionally, the authors of

proposed a technique for storing the code word table that

makes use of CAM, reconstructs the table using the data

that is now encoded, and updates it in real-time

.

Figure 1: Conventional Huffman encoding procedure

Figure 2: Binary Tree for Canonical Huffman encoding

The three stages of the proposed system are frequency

creation, code size calculation and sorting, and code size

restriction. To improve encoding efficiency and address the

shortcomings of the Canonical Huffman encoder in the first

two stages, we propose two distinct real-time frequency-

sorting designs that "eat" the input symbol in series. III-B

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 80

and III-C sections provide a detailed description of these

two structures [6].

IV. RESULTS

We present the results obtained from the FPGA

implementation of the High Throughput Lossless Canonical
Huffman Machine Decoder. The objective of this research

was to design and evaluate a hardware decoder that can

efficiently decode canonical Huffman-encoded data streams

with high throughput and minimal latency.

A. FPGA Implementation

The decoder was successfully implemented on an FPGA
platform. The design leveraged the parallel processing

capabilities of FPGAs to achieve high-speed decoding of

Huffman-encoded data.

B. Throughput Evaluation

The throughput of the implemented decoder was assessed

under various input conditions. Results showed that the
decoder consistently achieved high throughput rates,

significantly outperforming software-based decoding

methods.

1) Latency Analysis

Latency measurements were conducted to determine the
time taken by the decoder to process Huffman-encoded data

streams of varying lengths. The FPGA-based

implementation exhibited low and predictable latency,

making it suitable for real-time applications.

2) Decoding Accuracy

The accuracy of the decoder was verified by comparing the
decoded data with the original input data. The decoder

consistently produced accurate results, demonstrating its

ability to perform lossless decoding.

3) Resource Utilization

Resource utilization on the FPGA was evaluated to assess

the efficiency of the decoder's hardware design. Results

indicated that the design made efficient use of FPGA

resources while achieving high throughput.

4) Compression Ratios

To measure the effectiveness of the decoder in real-world

scenarios, data compression ratios were analyzed. The

decoder efficiently decoded Huffman-encoded data,

contributing to data compression and storage efficiency.

5) Energy Efficiency

Energy consumption during decoding operations was

measured. The FPGA-based decoder demonstrated energy

efficiency, making it suitable for applications with strict

power constraints.

6) Comparative Analysis

A comparative analysis was conducted to compare the
FPGA-based decoder's performance with software-based

Huffman decoders. The results highlighted the superior

throughput and lower latency achieved by the FPGA

implementation.

7) Overall Performance

The FPGA implementation of the High Throughput
Lossless Canonical Huffman Machine Decoder

demonstrated outstanding performance in terms of

throughput, latency, accuracy, resource utilization,

compression ratios, energy efficiency, and scalability.

The graphical Representation of FPGA implantation using

Huffman Machine Decoder is shown in below figures.

Figure 1: FPGA implantation using Huffman Machine Decoder

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 81

Figure 2: Comparison of Canonical Huffman Machine Decoder and Synthesized on Vertex

These results establish its suitability for a wide range of

applications, including data communication, image

processing, and data storage.

V. CONCLUSION

A high-throughput lossless canonical Huffman machine
decoder can be difficult to develop on an FPGA, but it has

the potential to have a big impact on speed, effectiveness,

and performance. Hardware-based parallelism, pipelining,

and effective memory management strategies are essential

for achieving high throughput. The Huffman tree format

and the decoding technique used can both have an impact

on the decoder's overall performance. Furthermore, the

careful optimization and balance of resources like clock

frequency, memory use, and logic utilization are necessary

for the FPGA implementation of a high-throughput lossless

canonical Huffman machine decoder [7].

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] Li, Y. Zhai, and X. Li, "A fast Huffman decoding algorithm
for image compression," in Proceedings of the IEEE Interna-
tional Conference on Big Data Computing and Communica-
tion Systems, 2020.

[2] Information Technology—Generic Coding of Moving Pictures

and Associated Audio Information Part 2: Video, Standard
ISO/IEC 13818- 2:2013, 2019.

[3] Alistair Moffat, 2019, “Huffman Coding”, ACM Computing
Survey. 52, 4, Article 85, August 2019.

[4] Y. Liu and L. Luo, “Lossless compression of full-surface solar
magnetic field image based on Huffman coding,” in Proc.
IEEE 2nd Inf.

[5] N. Markandeya and S. Patil, “Improve information rate in
Thien and Lin’s image secret sharing scheme using Huffman

coding technique,” in Proc
[6] R. B. Patil and K. D. Kulat, “Audio compression using dy-

namic Huffman and RLE coding,” in Proc. 2nd Int. Conf.
Commun. Electron. Syst. (ICCES), Coimbatore, India, 2017,
pp. 160–162.

[7] N. H. Kumar, R. M. Patil, G. Deepak, and B. M. Murthy, “A
novel approach for securing data in IOT cloud using DNA
cryptography and Huffman coding algorithm”.

	A. FPGA Implementation
	B. Throughput Evaluation
	1) Latency Analysis
	2) Decoding Accuracy
	3) Resource Utilization
	4) Compression Ratios
	5) Energy Efficiency
	6) Comparative Analysis
	7) Overall Performance

