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ABSTRACT- SLR has evolved as one of the most 

important areas in human–computer interaction and 
assistive communication technologies. With the rapid 

development of deep learning, SLR systems have evolved 

from traditional handcrafted features to highly efficient 

data-driven models capable of grasping complex spatial 

and temporal patterns in sign sequences. A wide variety of 

recent works have investigated different approaches that 

range from CNNs and recurrent architectures to GCNs for 

skeletal modelling and state-of-the-art transformer 

frameworks for long-range sequence understanding. 

Besides, multimodal systems that incorporate RGB, depth, 

skeletal information, and radio-frequency signals 

demonstrate enhanced robustness under difficult real-
world conditions. This survey provides an in-depth review 

of modern advances in SLR by underlining 

methodological novelties, commonly used datasets, 

architectural enhancements, and corresponding 

performance results. Shared challenges regarding signer 

variability, limited diversity in datasets, occlusions, and 

constraints on real-time processing are discussed in detail. 

The survey concludes by underlining emerging trends and 

future research directions oriented to the development of 

scalable, accurate, and context-aware SLR systems that 

can be effectively used in practical assistive applications. 

KEYWORDS- Sign Language Recognition, Deep 

Learning, CNN, GCN, Transformers, Pose Estimation, 

Multimodal Fusion, Continuous SLR, Word-Level SLR, 

Human–Computer Interaction. 

I. INTRODUCTION 

Sign languages are developed, natural languages that are 

entirely visual. They are extensively utilized within Deaf 
communities internationally. Deaf sign languages employ 

sensory channels simultaneously. These encompass hand 

configuration, motion, direction, placement and facial 

gestures. The primary cause that conventional automatic 

speech recognition systems cannot be modified for sign 

languages is the absence of signals, in sign languages. The 

goal of the Automatic Sign Language Recognition System 

is to decode these cues and convert them into spoken or 

written words [1] [2] [3] [4] [5] [6]. 
Advancements in computer vision and deep learning have 

swiftly transformed the landscape of SLR research. 
Convolutional Neural Networks excel at extracting 

features from images effectively identifying hand 

configurations and movements facial expressions and 

subtle articulations that are challenging to model with 

manually designed features [7] [8]. Recurrent Neural 

Networks, particularly LSTM and GRU variants have 
proven effective in modeling the progression of sign 

production and detecting minute temporal variations 

essential, for recognizing dynamic gestures and sign 

sequences. [9], [10].Additionally techniques based on 

graph and pose representations have become a focus of 

investigation. Graph Convolutional Networks (GCNs) 

which operate directly on graph structures derived from 

joints efficiently manage the temporal dynamics of 

gestures along with background interference and variation 

[11] [12]. Transformer networks have advanced SLR and 

sign language translation by utilizing self-attention to 
accurately model long-range dependencies, in inter-

channel gestures and coarticulation [13] [14], [15]. 

In spite of these improvements several obstacles continue 

to impede the effectiveness of SLR systems. These 

obstacles encompass variability and domain transfer/shift 

involving aspects like physiology, sign style, speed of 

movement, perspective, attire and recording conditions 

among elements. [16] Ongoing SLR learning poses a 

greater difficulty because natural sign languages lack 

distinct boundaries due, to coarticulation movement 

epenthesis and transitional gestures. [17] [18] [19]. 
An additional difficulty in this area is the availability of 

annotated data particularly, for less resourced sign 

languages. Creating a quality sign language dataset 

demands knowledge for part annotations and multi-

channel synchronization, which results in high costs and 

slow data collection. Consequently, certain sign languages 

lack datasets for the efficient training of deep learning 

models [20][21][22][23][24]. Additionally, elements like 

blocked hands, rapid movement, background distractions 

and poor lighting complicate recognition efforts because 

of environments [25]. Lastly challenges persist for SLR in 

video scenarios due, to the processing power needed for 
advanced neural models. Transformer networks, high-

resolution video encoders, and multi- stream fusion 

architectures are quite resource-intensive and therefore 

can't be deployed on mobile and embedded platforms for 

assistive usage scenarios [26], [27], [28]. Therefore, 

efficient and low-latency architectures for SLR are being 

researched. 
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II. LITERATURE SURVEY 

The research on SLR has grown quickly in the last ten 
years because of the recent advancements in deep learning 

and increased demand for inclusive communication 

systems in society. Most earlier attempts at SLR were 

based on handcrafted features that were highly susceptible 

to environmental changes and signer variations. With the 

arrival of deep learning, much more robust approaches 

emerged that are capable of automatically extracting 

spatial–temporal patterns, improving gesture 

segmentation, and increasing the overall recognition 

accuracy. Multiple architectural paradigms have since 

been investigated by researchers, including convolutional 

neural networks, recurrent sequence models, graph-based 
skeletal learning, and transformer frameworks. 

This literature review consolidates major contributions 

across these domains, putting in perspective their 

methodological novelties, benchmark performance, 

datasets, and application constraints. The survey will 

present an overview of how SLR models have evolved, the 

strengths and limitations of existing techniques, and also 

the trends that will guide future research by reviewing key 

works covering isolated, word-level, and continuous 

signing. The aim of this section is to provide a structured 

understanding of how SLR solutions have progressively 
evolved toward more accurate, generalizable, and context-

aware recognition systems capable of operating within real 

assistive environments. 

A. CNN-Based Approaches 

Early works on SLR with deep learning mainly relied on 

‘Appearance-based Methods' and were based on 2D and 
3D Convolutional Neural Networks (CNNs), incorporating 

spatial and short-term spatiotemporal information for 

feature extraction from RGB videos [7], [8], [29], [30], 

[31], [32], [33], [34]. These methods allow automatic 

learning of hierarchical visual representation based on 

handshape configuration, local movement, and upper body 

pose without requiring any hand-crafted features. 2D 

CNNs concentrate on spatial pattern recognition at the 

frame level, and 3D CNNs improve upon it with 

simultaneous consideration of motion information on a 
frame-by-frame basis. To improve discriminative abilities, 

multi-stream CNN architectures were formulated with 

dedicated branches for regions of interest like hands, face, 

and upper body, eventually combining these streams' 

outputs with a common prediction task [8], [30]. The 

structured knowledge of sign languages allows 

simultaneous focus on detailed articulation based on hands 

and additional non-manual information based on facial 

expressions and upper body configuration. 

Appearance-based CNNs show excellent performance on 

isolated sign languages recognition, as they receive an 
input clip with a single sign and well-defined temporal 

bounds and with limited co-articulation. CNNs' 

capabilities on local spatial and short-term temporal 

information might be adequate for classification in these 

conditions. Nevertheless, these methods have limitations 

when confronted with more realistic challenges. 

Variational factors on illumination, viewpoint, and signer's 

personal appearances might affect the extraction of spatial 

features. Moreover, with no explicit modeling outside 

short-term temporal windows, these methods' capabilities 

might be limited on continuous sign languages. 
Consequently, these challenges made subsequent 

investigations incorporate pose-based models, recurrent 

models, and transformers. 

Figure 1: A typical CNN-based framework for sign 

language recognition is depicted below, showcasing the 

parallel CNN branches that the model uses to handle the 

visual/sensory inputs, along with the merging of the 

features and classification layers, representing the spatial 

as well as the short spatiotemporal properties that are 

captured using CNNs for isolated sign recognition. 

 
Figure 1: CNN-based multi-stream sEMG feature extraction and fusion architecture for gesture recognition.
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B. RNN/BiLSTM-Based Methods 

In SLR, especially, the role of sequence modeling is of 

great importance, as it allows the learning of long-term 

temporal dependencies beyond the short-range patterns 

captured by the CNN. This is done in a similar way to the 

strategy of combining CNN-based feature extractors with 

recurrent architectures, such as LSTMs and GRUs, to 

enable the tracking of motion trajectories and evolving 

articulations across extended sign sequences [9], [17], 

[35], [36], [37], [38], [39]. Hybrid CNN-RNN models are 
thus particularly effective under continuous recognition 

scenarios, in which signs unfold over time with variable 

duration and transitional movements. The maintenance of 

memory states that encode past visual information helps 

recurrent networks tell apart signs with similar visual 

appearances but distinct temporal signatures, which 

improves recognition accuracy and robustness against 

intra-signer variability. 

In contrast to recurrent architectures, TCNs have become 

increasingly popular in modeling sequential dynamics 

through hierarchical stacks of dilated convolutions. As a 

simple, yet powerful architecture, TCNs exhibit 
advantages in parallelized computation, stable gradients, 

and flexible receptive fields that can grow exponentially 

with network depth. By being incorporated into CTC or 

encoder-decoder frameworks, TCN-based models are able 

to learn alignment between input video frames and 

corresponding gloss sequences with no explicit boundary 

annotations. A competing alternative to RNN-based 

sequence models in state-of-the-art SLR, TCNs can jointly 

model temporal structure and alignment in an end-to-end 

and computationally-efficient manner. 

C. GCN-Based Skeletal Approach 

The recent developments in pose estimation tools like 

OpenPose and MediaPipe have led researchers working on 

SLR focus on pose-based methods. The method uses 

structured coordinates representing joint locations instead 
of working with raw pixel intensities. By identifying 

2D/3D key points representing hands, arms, and upper 

body regions, SLR methods based on pose estimation 

make recognition less dependent on factors like clothing 

and background complexity. It becomes feasible for the 

recognition system to concentrate on sign dynamics and 

articulation because working with skeletons significantly 

reduces dimensions compared to processing the entire 

frame size of an input image. As a result, pose estimation 

methods can be very efficient. 

Figure 2 shows a pose-based transformer architecture for 

the prediction of sign language glosses. In this image, the 
use of skeletal key points derived from video frames, 

represented by attention mechanisms that focus on spatial-

temporal relationships, emphasizes the insensitivity of 

skeletal learning to backgrounds and light conditions. 

 

Figure 2: Pose-based transformer architecture for sign language gloss prediction from video. 

Graph Convolutional Networks (GCNs), nowadays, have 

been recognized as the preeminent representation 

technique for modeling skeletal data within SLR. By 

representing joints as graph vertices with anatomical graph 

edges connecting them, GCNs seamlessly encode spatial 

and temporal information within consecutive frames as a 

result of anatomical knowledge [10], [40], [41], [42], [43], 

[44]. GCNs learn attributions of joints representing 

difference among poses with comparable global movement 

but divergent hand trajectory and fingeraghan 

configuration. Moreover, GCNs seamlessly address 

challenges associated with noise and missing joints, who 

commonly constitute limitations within pose estimation 

methods, making them apt tools for uncontrolled settings. 
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Because of their resilience against illumination changes, 

background presence, and motion caused by cameras, 

pose-based GCN methods have been recognized as an 

efficient alternative solution compared with conventional 

appearances for SLR. 

D. Transformer-Based Models 

Transformers have increasingly emerged as a cornerstone 

for state-of-the-art SLR research because they have shown 

efficacy at modeling global and distant dependencies 

without incorporating recurrent computations. Based on 
these benefits obtained with self-attention mechanisms, 

more global modeling and understanding of complex sign 

language sequences have been achieved without 

limitations on distant frames [11], [12], [45], [46], [47], 

[48]. Variations based on Vision Transformers, video 

transformers, and CNN-Transformer architectures have 

shown improvements with global understanding abilities 

via inclusion of spatial knowledge and motion-aware 

attributes. These architectures have maintained state-of-

the-art performance on various SLR benchmark datasets 

due to their merits pertaining to malleability, extendibility, 

and efficient combination of multi-channel sources like 

RGB, Depth, Optical Flow, and Skeletal. 

The main advantage that attention-based models have can 

be attributed to their capability to focus selectively on the 

most informative aspects of a signing sequence. It 

becomes possible with self-attention that allows it to focus 
selectively on important frames, paths, and articulations, 

as well as grammatical and semantic aspects, on one hand. 

At the same time, it captures equally well non-manual 

signals, like facial expressions and head movements, 

which assume equal importance on the grammatical and 

semantic understanding of sign languages. The 

coarticulation, ambiguous boundaries, and overlap signals 

are remarkably well processed with transformer 

architectures, and thus they form a strong foundation for 

next-generation SLR systems. 

Figure 3 describes the internal functioning of the 
Transformer architecture. The overall architecture 

description of the encoder and decoder using multi-head 

attention along with the feed-forward layer is presented in 

Figure 3 (A), whereas Figure 3 (B) represents the 

scaleddot product attention layer that captures the 

interaction among the query, key, and value vectors. 

 

Figure 3: (A) Encoder–decoder structure of the Transformer with multi-head attention, feed-forward layers, and positional 

encoding. (B) Scaled dot-product attention mechanism illustrating the interaction between query, key, and value vectors. 

E. Approaches Based on Fusion and Multimodality 

Traditional Single-Modality SLR methods have been 

remedied with an innovative perspective brought about 

through Multimodal SLR methods. These models have 

incorporated multiple sources of complementary 

information, ranging from traditional sources like RGB 

images, Depth images, Optical flow images, and Key 

points images, and have gone a step ahead and 

incorporated Information from IMU. All these sources 

provide information about different aspects of sign 

interpretation. While RGB images provide information 

about the rich attributes of signing, Depth images form 3D 

structure and resolve ambiguities associated with 

overlapping limbs. Optical flow images depict motion 
attributes, Key points convey joint articulation 

information, and IMU signals are associated with 
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orientation and acceleration. 

Efficient fusion techniques are critical for effectively 

utilizing multimodal inputs. Some research papers have 

explored fusion at the input level, feature level, and 

decision level. The input level fusion technique stacks raw 
modality features for simultaneous modeling; feature level 

fusion involves aggregating feature extraction from 

separate branches at the modality level. Decision level 

fusion integrates predictions from multiple classifiers. 

Through various architectures such as CNNs, RNNs, 

GCNs, and transformers, it has been made amply clear that 

fusion can significantly improve recognition accuracy and 

make an SLR system more resilient and apt for real-world 

deployments [13], [49], [50]. 

Figure 4 represents the structural design of a pose-based 

representation system for signs. Figure 4 (a) indicates 
spatial junction grouping, Figure 4 (b) represents hand-

centered refinement layers, and Figure 4 (c) represents 

spatiotemporal skeleton graph building, again emphasizing 

multimodal fusion benefits in increasing robustness of sign 

detection performance. 

 

Figure 4:(a) Spatial joint grouping, (b) hierarchical hand-focused refinement, and (c) spatiotemporal skeleton graph 

construction used for pose-based sign representation. 

F. Datasets Used in Literature 

Large, annotated datasets have been a driving force behind 

these advances in SLR, offering the scale and variety that 

modern deep-learning models require. Core resources 
include RWTH-PHOENIX-Weather and its extension 

PHOENIX-2014T, central benchmarks for continuous 

German Sign Language and drivers of recent advances in 

both sequence modeling and translation tasks [2]. For 

American Sign Language, MS-ASL introduced a large-

scale dataset with thousands of classes, facilitating 

research into high-vocabulary recognition and generalized 

representation learning [3]. Similarly, WLASL contributed 

a diverse, multi-signer dataset in the area of isolated sign 

recognition, displaying rich signer variability in terms of 

appearance, speed, and articulation patterns [4]. In 

addition to these larger corpora, an emerging set of 
regional datasets has expanded linguistic coverage for 

Chinese, Indian, Turkish, Spanish, and Arabic sign 

languages, reducing dependence on resource-rich 

languages and thus helping to support fairness and cross-

linguistic generalization [5], [20], [21], [22], [23], [24]. 

These datasets indicate a shift from early, small-scale 

laboratory collections to realistic, in-the-wild benchmarks. 

Indeed, modern SLR corpora increasingly include natural 

variations of lighting, cluttered or dynamic backgrounds, 

signer diversity, and unconstrained camera arrangements. 

It is such ingredients that provide real-world signing 
conditions, promoting models robust beyond the carefully 

created, laboratory-controlled environment. It follows that 

very large, linguistically diverse datasets have become 

crucial for benchmarking of SLR architectures and driving 

advances in the direction of continuous recognition, 

translation, and multimodal fusion. 

Major datasets referred to throughout SLR studies include 

in the below table 1: 

Table 1: Comparison of benchmark sign language datasets 

based upon language, task type, size, and input modality 

Dataset Language Type Size Modality 

WLASL ASL Word-level 
21k+ 

videos 
RGB 

MS-ASL ASL Word-level 
25k 

videos 
RGB 

Phoenix 
2014T 

German 
SL 

Continuous 9h RGB 

ASLLVD ASL Isolated 
3.3k 
signs 

RGB 

INCLUDE Indian SL Isolated Medium RGB 

HowToSign ASL Continuous Large 
RGB + 

Pose 

G. Gaps in Literature Summary 

SLT can be viewed as an extension with considerably 

greater ambitions than traditional SLR because it aims at 

translating entire sign videos directly into spoken 

sentences. Contemporary SLT models usually employ 

encoder-decoder frameworks with attention modules and 
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transformers designed to focus on capturing intricate 

spatiotemporal relationships among sign sequences of 

arbitrary lengths [18],[19],[46]. While the encoder might 

be composed of CNNs, RNNs, GCNs, or even 

transformers that focus on encoding a high-level 
representation of sign videos based on the visual inputs, 

the role of the decoder would be producing grammatically 

correct spoken sentences. 

Despite these advances, SLT still proves to be a very hard 

task because of some intrinsic properties that exist due to 

the difference in structure between sign languages and 

spoken languages. The sign languages incorporate very 

intricate spatial grammars, classifiers, role-shifting, and 

simultaneous manually and non-manually tracked 

gestures, making it very hard to map these into the linear 

word structure of spoken languages. Variations in facial 
expressions, head movement, and signing space are 

meaningful and should be carefully incorporated into the 

translation task by the learning model. Despite these 

difficulties, advances made in alignment learning, 

attentions, and large multilingual corpora have made it 

easier and more efficient. Recent works based on 

transformers have made very encouraging breakthroughs, 

indicating that advances made in learning multimodal 

representations will narrow the gap between visual-

communicative and natural languages. 

III.  PROPOSED METHODOLOGY 

This survey follows a structured and transparent 

methodological framework to make the review of existing 

SLR research systematic, comprehensive, and unbiased. 

The goal is to provide a comprehensive overview of 

modern deep-learning methods, performance, and future 

research trajectories. To accomplish this, the methodology 

will follow several key stages, including the identification 

of literature selection criteria, categorization strategies, 

comparative evaluation, and analytical synthesis. 

A. Research Framework 

The proposed methodology follows a structured research 

framework that is better suited to clearly and 

systematically present the evolution in the SLR domain. 

The survey covers only those studies addressing deep-

learning-based architectures, including CNN, RNN, GCN, 
transformer, and more recently, multimodal systems. 

Studies have been collected from valid scientific sources 

and subsequently filtered for their contribution to 

automatic sign interpretation, experimentations based on 

approved datasets, and architectural novelty. By narrowing 

the scope to methods developed around deep learning and 

widely referenced datasets of sign languages, the 

framework ensures that only impactful contributions 

relevant to the technical aspects are evaluated. The final 

set of research works reflects the chronological evolution 

of SLR methods from early vision-based models to 

transformer-driven and multimodal fusion frameworks. 

B. Criteria of Categorization 

After gathering the relevant literature, the studies were 

categorized on consistent parameters to facilitate 

comparative understanding. Each work was first classified 

according to the learning model employed, thus allowing 
clear separation between CNN, GCN, Transformer, and 

hybrid architectures. Further categorization was done 

based on the type of modality used in the input stream, 

including RGB frames, pose-based skeletal data, depth 

images, optical flow, and RF signal-based sensing. The 

task domain further helped in categorizing the methods 
developed for either isolated gestures, word-level 

recognition, or continuous signing. The approach to 

temporal modeling was also noted, whether achieved 

through recurrent units, temporal convolutions, attention 

mechanisms, or cross-modal fusion. These are the 

categorization criteria that ensure works of similar intent, 

computational design, and learning philosophy are 

analyzed against each other for a more meaningful and 

uniform comparison. 

C. Performance Appraisal 

Performance appraisal constitutes the core analytical stage 

of the proposed methodology. Each selected work is 

assessed against the reported results about benchmark 

datasets, model training strategies, and accuracy-related 

indicators. This assessment largely highlights general 

recognition accuracy, Top-k correctness, and quality in 

temporal alignment, while also considering Word Error 
Rate in continuous sign prediction or sequence-to-text 

translation metrics such as BLEU or ROUGE scores. 

Practical aspects, like model inference speed, stability 

under complex backgrounds, or robustness related to 

lighting variations and signer-specific differences, are also 

explored to gain insight into the readiness of these systems 

for real-world deployment. Due to this standard uniformity 

in evaluation, the appraisal lucidly provides insight into 

how various architectures perform under changing data 

conditions, input modalities, and application constraints. 

D. Discussion and Key Findings 

The methodology closes with a structured discussion 

synthesizing research outcomes, underlining notable trends 

in performance, and pointing out recurrent limitations. The 

comparison study shows that transformer-based systems 

are the most promising on large-scale datasets due to their 

strong temporal encoding capabilities, while GCN-based 
skeletal models maintain stability under conditions of low 

visibility and cluttered scenes. Multimodal fusion shows 

consistently better robustness, reducing signer-dependency 

by including pose, depth, and RF-sensor streams in 

addition to RGB imagery. Observed patterns emphasize 

maturity and diversification but also point to challenges 

concerning dataset scarcity, signer variability, continuous 

signing segmentation, and real-time deployment burdens. 

These findings help outline the direction for future 

research by emphasizing larger multilingual corpora, light-

weight models efficiently optimized for on-device 
inference, and learning strategies for multimodal data that 

generalize across environments and signers. 

IV.  RESULTS 

Aggregated findings from reviewed research indicate a 

number of consistent trends. 

A. Performance Trends 

Studies prove: 

 Transformer architectures achieve the highest accuracy 

in large-vocabulary datasets. 
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 GCN models work stably when the visual features are 

unreliable. 

 Multimodal fusion provides accuracy 5–15% higher 

than single-input models. 

B. Influence of Dataset 

Large datasets like WLASL, MS-ASL, and Phoenix-

2014T result in remarkable increases in generalization. 

Smaller regional datasets have lower performances 

resulting from limited vocabulary and signer diversity. 

C. Accuracy Summary 

Typical ranges found in literature: 

 CNN-based methods: 70–90% 

 GCN-based models: 80–92% 

 Transformer-based models: 90–96% 

 Multimodal approaches: up to 98% for isolated SLR 

D. Major Insights 

 Transformers are the state-of-the-art currently. 

 Multimodal systems provide the best overall 

robustness. 

 Skeleton-based models enhance environmental 

resilience. 

 Dataset size and diversity considerably impact the 

model's performance. 

 Real-time performance remains difficult with high-

complexity models. 

 

Figure 5: Comparison of transformer and RNN 

Figure 5 is a comparative graph between transformer 
models and RNN models. The graph shows the 

capabilities of transformers over RNN models in 

perceiving temporal relationships, thereby increasing 

accuracy during sign language recognition. 

 

Figure 6: Performance metrics analysis of machine learning techniques with probabilistic features. 

In the above Figure 6 shows the performance metrics using 

probabilistic features for various methods of machine 

learning. This graph allows for a quantitative analysis of 

both effectiveness and accuracy of recognition, thus 

validating the observations made in this section. 
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V. CONCLUSION 

This survey presents an in-depth analysis of major 
developments in deep-learning-based Sign Language 

Recognition across various architectures, modalities, and 

datasets. Recent developments, like transformers and 

multimodal learning, have substantially increased the 

accuracy, robustness, and scalability of recognition. Yet, 

limitations remain, including the limited diversity of 

datasets, the high inter-signer variability, continuous sign 

segmentation, and real-time inference with computational 

demands. 

Future work is thus needed in large multilingual data 

creation, lightweight models for edge deployment, self-

supervised and foundation-model learning, signer 
independence, and integration of techniques for improving 

real-world applicability through multimodal fusion. With 

each step, the progress continues to point toward the fact 

that SLR systems have tremendous potential for 

transformation into accessibility and communication 

technologies. 
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