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ABSTRACT- This paper provides a comprehensive
review and strategic framework to navigate this complex
ecosystem of open-source and proprietary models for
healthcare. We analyze the technical capabilities,
implementation challenges, and governance requirements
of both Al paradigms through a systematic and organnized
survey of current literature and emerging trends. Our
findings indicate that while open-source models offer
superior transparency, customization, and data privacy—
increasingly  rivaling proprietary  performance in
diagnostics—proprietary systems maintain advantages in
reliability, support, and integration.

However, AGI also introduces complex risks ranging from
algorithmic  bias (if uncontrolled) to regulatory
fragmentation (lack of regulation). Evidence shows
concerning patterns in automated decision appeals and
significant financial barriers to implementation that could
limit accessibility.

To address these challenges, we propose a tiered risk-
management and governance framework that synthesizes
the strengths of both open and closed-source approaches.
Our recommendations include the adoption of
international certification protocols aligned with global
explainability standards, federated learning architectures to
ensure privacy while enabling collaboration, and adaptive
policymaking to balance innovation with patient safety.
This integrated approach aims to maximize the benefits of
both open-source and proprietary Al while focusing on
remodification of unique risks posed by agentic systems.

KEYWORDS- Agentic Al; Al Ethics; Al Governance;
Acrtificial Intelligence; Clinical Decision Support; Data
Privacy; Generative Al; Health Policy; Healthcare;
Healthcare Implementation; Medical Diagnostics; Open-
Source Al; Proprietary Al; Risk Management

I. INTRODUCTION

The integration of artificial intelligence (Al) in healthcare
represents one of the most transformative and impactful
technological advancements, with the global healthcare Al
market projected to grow from $29.01 billion in 2024 to
$504.17 billion by 2032 [1]. This rapid expansion is
characterized by two parallel revolutions: the maturation
of both open-source and proprietary Al models for medical
applications, and the emergence of autonomous Agentic

Generative Al (AGI) systems capable of independent

decision-making and action.

The current healthcare Al landscape presents a

fundamental dichotomy. Proprietary systems from major

technology companies offer sophisticated capabilities but

often at significant cost and with limited transparency [2].

Concurrently, powerful open-source alternatives have

emerged, providing new opportunities for customization,

transparency, and cost-effective implementation [3], [4].

This competition has accelerated innovation while creating

complex strategic decisions for healthcare organizations

navigating this evolving ecosystem.

Simultaneously, the convergence of agentic autonomy and

generative capabilities has produced AGI systems that are

redefining healthcare delivery paradigms. These systems
can autonomously act upon generated insights—achieving

89% AUC in outcome prediction [5] while streamlining

claims processing by 65% [6]. However, this autonomy

introduces  unprecedented  governance  challenges,
including algorithmic bias (evidenced by 73% appeal rates
in Al-generated insurance denials [7]) and regulatory
fragmentation between international standards and state-

level approaches [8], [9].

Three disruptive trends frame our analysis:

e Technical Convergence: Open-source models now
rival proprietary performance in diagnostics while AGI
systems achieve human-level accuracy in controlled
settings (92% cancer screening [5])

e Economic Transformation: AGI promises 3:1 ROI
through automation [10] but requires substantial
investment in implementation ($250K-$2M per system
[11]) and workforce retraining ($1.4B [12])

e Regulatory Complexity: Emerging frameworks range
from WHO’s explainability standards [8] to state-level
insurance mandates [9], creating a fragmented
governance landscape

This paper provides a comprehensive analysis of both
open-source/proprietary Al comparisons and AGI
governance challenges. We synthesize findings from 25
contemporary sources to: (1) characterize the technical
spectrum of healthcare Al architectures; (2) quantify
implementation risks and performance metrics across both
paradigms; and (3) propose a harmonized governance
framework that addresses the unique challenges of
autonomous systems while leveraging the strengths of
both open and closed-source approaches.
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Our analysis reveals that while multi-agent systems can
(under most optimistic scenarios) reduce chronic care
costs by 40% [13], their adoption depends on resolving
fundamental trade-offs autonomy vs. accountability [14].
Similarly, the open-source vs. proprietary dichotomy
presents trade-offs between transparency/customization
and reliability/support that must be selected for pecific
healthcare contexts.

Il. LITERATURE REVIEW

A. Proprietary Al Models in Healthcare

Proprietary Al models are generally paid models and
typically offer robust performance, comprehensive
support, and seamless integration with existing healthcare
infrastructure with big-tech companies. Google’s health Al
initiatives, including their Gemini foundational model and
AlphaFold system, demonstrate the capabilities of well-
resourced proprietary approaches in advancing medical
research and clinical applications [15].

The advantages of proprietary models include higher
reliability, extensive validation, and professional support
services. As explained in [16], proprietary systems can
provide enhanced security features that are particularly
valuable for protecting sensitive health data. These models
typically undergo rigorous testing and regulatory
compliance processes as defined by the governments,
making them attractive for risk-averse healthcare
organizations especially the ones run by government.

B. Open-Source Al Advancements

Recent advancements in open-source Al have significantly
narrowed the performance gap with proprietary systems.
Multiple studies from 2025 have demonstrated that open-
source models can compete with leading proprietary
LLMs in solving complex medical cases and diagnostic
challenges [17], [18]. Harvard Medical School researchers
found that open-source Al tools now match top proprietary
models in tackling difficult medical cases that require
sophisticated clinical reasoning [17].

The transparency and adaptability of open-source models
represent  significant advantages for  healthcare
applications. As [19] argue, "the future for LLMSs in
medicine must be based on transparent and controllable
open-source models™ because "openness enables medical
tool developers to control the safety and quality of
underlying Al models, while also allowing healthcare
professionals to hold these models accountable.”

C. Performance Comparisons

[20] conducted a comprehensive assessment of frontier
open-source and proprietary LLMs for complex diagnoses,
finding that while proprietary models still maintain some
advantages in certain specialized tasks, the performance
gap has substantially narrowed. Their research indicates
that "newer open-source large language models have
demonstrated capabilities approaching those of closed-
source proprietary models in medical reasoning tasks."

Similarly, University of Colorado research demonstrated
that open-source Al tools can match commercial systems
in medical scan reporting while offering superior data
privacy protection [21]. These findings challenge the
traditional assumption that proprietary systems inherently
outperform open-source alternatives in clinical settings.

D. Literature ldentification and Selection

This work refers multiple databases and sources, including
peer-reviewed journals, conference proceedings, technical
reports, and industry publications. The search focused on
publications from 2023-2025.

E. Comparative Analysis Framework

We reviewed various multi-dimensional framework to

evaluate Al models across several dimensions:

o Performance: Diagnostic accuracy, clinical reasoning
capabilities, and specialized medical knowledge

e Security and Privacy: Data protection, compliance and
regulations, and privacy issues

e Customization and  Adaptability:
customization, and local adaptation

e Cost and Accessibility: Implementation costs, licensing
fees, and accessibility for resource-constrained settings

e Transparency and Accountability: Explainability,
auditability, and regulatory compliance

F. AGI

AGI combines generative Al’s  content-Creation
capabilities with autonomous decision-making, enabling
systems to perform complex tasks without human
intervention [22]. In healthcare, AGI applications range
from diagnostic algorithms to care management and
administrative automation [23]. For example, AGI can
predict patient outcomes with high accuracy [5] and
streamline claims processing [6].

AGI introduces various idiosyncratic risks, including
biased decision-making, lack of transparency, and
potential misuse [24]. In this regard, regulatory
frameworks, such as those proposed by the World Health
Organization (WHO), emphasize the need for ethical
guidelines and governance structures to mitigate these
risks [8].

G. Comparative Analysis

a) Technical Performance-

Recent comparative studies have demonstrated that the
performance gap between open-source and proprietary Al
models in healthcare applications has significantly
narrowed. [25] reported that "open-source Al rivals
leading proprietary models in tackling complex medical
cases," with particular strength in diagnostic reasoning and
clinical decision support.

The emergence of specialized medical Al models like
MedGemma has further enhanced open-source
capabilities. [26] describes MedGemma as "Google’s most
capable open models for health Al development," offering
multimodal  capabilities  specifically designed for
healthcare applications. These advancements challenge the
traditional dominance of proprietary systems in clinical
settings.

b) Security and Privacy Considerations

Proprietary models often emphasize their security features,
with [16] arguing for "the power of proprietary models in
protecting health data." These systems typically offer
comprehensive security certifications and compliance with
healthcare regulations like HIPAA.

However, open-source models offer distinct privacy
advantages through offline deployment capabilities. [3]
note that DeepSeek "supports offline deployment,
addressing some data privacy concerns" that are

Flexibility,
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particularly relevant in healthcare settings. This capability
allows healthcare organizations to maintain complete
control over patient data without relying on external cloud
services.

c) Cost and Accessibility

Open-source models offer lower implementation costs and
avoid ongoing licensing fees, making them accessible to a
wider range of healthcare providers.

[27] highlights how "open-source Al tools can transform
healthcare, especially in resource-constrained settings™ by
reducing financial barriers to advanced Al capabilities.
This accessibility advantage aligns with broader efforts to
democratize healthcare Al and reduce disparities in
technology access.

d) Regulatory Compliance and Validation

Proprietary models often have advantages in regulatory
compliance due to extensive validation processes and
established regulatory pathways vetted by licensed
experts. These systems typically undergo rigorous testing
and documentation required for medical device approval
in various jurisdictions as requested by the lawmakers.
Open-source models face challenges in regulatory
compliance due to their decentralized development across
nations and non-standard validation processes. However,
as [28] note, "while open-source software offers the
potential for cost savings, flexibility, and improved
interoperability compared with proprietary systems, it
raises critical questions about security and operational
feasibility" that must be addressed through robust
validation frameworks.

I11. QUANTITATIVE FOUNDATIONS
AND MATHEMATICAL
FRAMEWORKS

A. Top 10 Key Terms, Theories, and Models in Agentic
Al for Healthcare

Agentic Generative Al (AGI) in healthcare is a rapidly
evolving field, blending advanced Al techniques with
autonomous decision-making. Below are the top 10 key
terms, theories, and models shaping this domain:

a) Agentic Al

Definition: Al systems capable of autonomous goal-
directed behavior, making decisions without constant
human input [22].

Relevance: Enables proactive healthcare management like
automated diagnosis and treatment planning [13].
Example: IBM’s agentic systems for patient monitoring
[29].

b) Large Multi-Modal Models (LMMs)

Definition: Generative Al models processing multiple data
types (text, images, etc.) for diverse outputs [8].
Relevance: Powers diagnostic tools combining radiology
images with EHR data [5].

Challenge: Requires massive datasets raising privacy
concerns [30].

c) Explainable Al (XAl)

Definition: Methods making Al decisions interpretable to
humans [29].

Relevance: Critical for clinical trust and regulatory
compliance [31].

Model: LIME/SHAP algorithms for transparency [32].

d) Al Governance Frameworks

Definition: Policies ensuring ethical Al deployment [33].
Relevance: WHO guidelines for healthcare Al [8].

Model: EU’s risk-based Al Act [30].

e) Reinforcement Learning (RL)

Definition: Al learning through trial-and-error feedback
[34].

Relevance: Optimizes treatment plans via continuous
learning [35].

Challenge: Risk of harmful exploration in clinical settings
[24].

f) Digital Twins

Definition: Virtual replicas of patients/organs for
simulation [23].

Relevance: Predicts drug responses and surgical outcomes
[36].

Example: Siemens Healthineers’ heart models [37].

g) Federated Learning

Definition: Decentralized Al training preserving data
privacy [8].

Relevance: Enables cross-institutional
without data sharing [38].

Model: NVIDIA Clara for healthcare [10].
h) Transformer Architectures
Definition: Neural networks processing sequential data
(e.g., GPT-5) [39].

Relevance: Foundation for generative medical chatbots
[1].

Limitation: High computational costs [12].

i) Ethical Risk Matrices

Definition: Tools quantifying AI’s ethical impacts [30].
Relevance: Mitigates biases in diagnostic algorithms [7].
Model: WHO’s Al ethics assessment toolkit [33].
j)Human-Al Collaboration Models

Definition: Frameworks optimizing human-Al teamwork
[14].

Relevance: Balances autonomy with clinician oversight
[40].

Example: "Al-as-assistant" in radiology [41].

collaboration

Table 1: Comparative Analysis of Key AGI Models in
Healthcare

Model Strength Weakness Use Case
. High
LMMs Multi-data resource Diagnostics
integration
needs
RL Adappve Safety risks Treatment
learning optimization
Federated Privacy Complex Collaborative
Learning preservation | coordination research

B. Performance Evaluation Metrics

The performance of both open-source and proprietary
models is evaluated using standardized metrics derived
from confusion matrix analysis:

TP+TN

= 1
ACCUracy = & TN ¥ FP 4 FN @)
breciior TP o

recision = TP + FP
. TP
Recall \W\(Sensitivity\\\) = ——— ?3)

TP+ FN
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FLS ) Precision X Recall @)
- = X
core Precision + Recall

where, TP = true positives, TN = true negatives, FP =
false positives, and FN = false negatives [20].

For medical diagnostic applications, additional specialized
metrics are employed:

Area Under ROC Curve W\(AUC\\)

1
= f T PR(FPR)dFPR ©)
0
.\ . R — 6
Positive Predictive Value \W\(PPV\\\\\) TP + FP (6)
. > =— (7
Negative Predictive Value \WW(NPV\\\) TN + FN (7

Recent comparative studies indicate that open-source
models achieve AUC scores of 0.92-0.95 compared to
0.94-0.96 for proprietary models in complex diagnostic
tasks [17].

C. Economic Modeling and Cost-Benefit Analysis

The economic impact of healthcare Al implementation is
quantified through comprehensive cost-benefit analysis
frameworks. The total cost of ownership (TCO) for Al
systems is calculated as:

n
C,(t)+C,, )+ C, (1)
T — . Z 0 m
co Cl+t—1 L (8)
where, C; represents initial implementation costs, C,(t)

operational costs, C,,(t) maintenance costs, and C,(t)
licensing fees at time t, with r denoting the discount rate

[42].
The return on investment (ROI) is computed as:
n B(t) — Cgt)
ROI = —(Cl 1 100% ©)

where, B(t) represents benefits and C(t) costs at time t.
Studies indicate that open-source solutions achieve ROI of
180-250% over 3 years, compared to 120-180% for
proprietary systems [43].

D. Market Growth Projections and Forecasting

The exponential growth of the healthcare Al market is
modeled using compound annual growth rate (CAGR)

formulations:
1

CAGR = (g)n ~1 (10)
where V; is the initial market value ($29.01 billion in

2024), V; is the final projected value ($504.17 billion in

2032), and n is the number of years [1]. This yields a

projected CAGR of 37.2% from 2024 to 2032.

The market share distribution between open-source and

proprietary solutions is modeled using logistic growth

equations:

S(t) = K

14 K — S, e-Tt (11)

0
where S(t) is market share at time ¢, K is carrying

capacity (projected maximum market share), S, is initial
market share, and r is growth rate [44].

E. Performance Improvement Metrics

The quantitative improvement in diagnostic and
operational efficiency is measured through several key

metrics:
. . . P Tmanual - TAI o
Diagnostic Efficiency Gain = x100%  (12)
manual
E aseline E
Error Reduction Rate = —=¢ Al 100% (13)
baseline

Al ~ Tbaseline

Throughput Improvement = X 100% (14)

i Pbaseline i
where T = time, E = error rate, and P = processing

throughput [45]. Current implementations show 30-45%
reduction in diagnostic time and 25-40% improvement in
administrative efficiency.

F. Statistical Validation Frameworks

The wvalidation of Al system performance employs
rigorous statistical methods including:

o

Confidence Interval = x + z— 1
= (15)

Statistical Power = 1 — 8 = P(reject Hy V H; true)  (16)

Effect Size = M (17)

(2
Recent studies employ sample sizes of 10,000-50,000
cases for model validation, achieving statistical power 0.9
and confidence intervals of +1.5-2.0% for accuracy
metrics [20].

G. Agentic Al Performance Metrics

For agentic Al systems, additional quantitative measures
are employed:

Successful Tasks « 100% (18)
Total Tasks ?

Decisions Made Autonomously

Task Completion Rate =

Autonomy Level =

Total Decisions (19)
X 100%
Human Intervention Frequency
Intervention Events (20)

" Total Processing Time
Current agentic systems achieve task completion rates of
85-92% with autonomy levels of 70-80% in well-defined
clinical scenarios [46].

H. Quality-adjusted Life Year (QALY) Calculations

The clinical impact of Al systems is quantified using
QALY -based measures:

n
QALY = Z[qt x (1+7)"¢] 1)
t=1
Incremental Cost-Effectiveness Ratio \WW(ICERW\\)
CAI - Csta.ndard (22)

QALYAI - QALYstandard
where g, represents quality of life at time t, and r is the
discount rate [47]. Al-assisted approaches show ICER
values of $15,000-$25,000 per QALY gained, indicating
cost-effectiveness compared to conventional care.
I. Reliability and Safety Metrics

The reliability of healthcare Al systems is quantified
through:
Mean Time Between Failures \WW(MTBF\\\\\)
__ Total Operational Time (23)
"~ Number of Failures
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Incorrect Outputs

= 0
Error Rate Total Outputs X 100% (24)
Safety Margin = Threshold Value — Operating Value
alety Matgin = Threshold Value (25)

X 100%

Current systems achieve MTBF of 10,000-15,000 hours
and error rates of 0.5-1.5% in clinical applications [28].
These quantitative frameworks provide the mathematical
foundation for evaluating, comparing, and optimizing
healthcare Al systems, enabling evidence-based decision
making and continuous improvement in clinical
applications.

IV. VISUAL FRAMEWORK:
ARCHITECTURE, TIMELINE, AND
STRATEGIC ANALYSIS

This section presents a comprehensive visual framework
comprising architectural diagrams, future timelines, and
analytical visualizations that synthesize the key findings
and projections from our analysis of open-source versus
proprietary Al in healthcare for the below themes:

Architectural Framework for Hybrid Al Deployment
Future Development Timeline (2025-2030)
Performance Comparison Radar Chart

Technology Adoption Curve

moo w >

Strategic Decision Framework

V. OVERVIEW OF FIGURES AND VISUAL
FRAMEWORKS

This section provides a comprehensive overview and
references all the figures presented in this paper to
illustrate the comparative insights between open-source
and proprietary Al in healthcare, as well as the strategic
frameworks for agentic Al implementation.

A. Visual Framework Components

Figure 1 presents the Hybrid Al Architecture Framework
for Healthcare, demonstrating how proprietary and open-
source Al systems can be integrated through an intelligent
orchestration layer. This framework shows how
organizations can leverage the reliability of proprietary
systems (achieving 94-96% AUC in diagnostics [17])
alongside the flexibility and cost advantages of open-
source solutions (providing 57% cost savings [42]).

Reliability

Proprietary Al Syste ms

Flexibility

Opcn Source Al Systems

Hybrid Orchmraué

Dynamic task
allocation based on
risk, complexity, and
data requirements

Clinical Applicalions]

Figure 1: Hybrid Al Architecture Framework for Healthcare

Figure 2 illustrates the Data Flow Architecture,
highlighting the intelligent routing mechanism between
proprietary and open-source systems based on clinical risk
assessment. This visualization demonstrates how high-risk

tasks are automatically routed to FDA-approved
proprietary systems while standard-risk applications utilize
cost-effective open-source solutions [16] [42].

Innovative Research Publication

98



International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Clinical Data Input

Data Preprocessing

FDA-approved systens High-risk
HIPAA compliant Proprietary Al

[LE]

Task Router

: Customizable
tandard- Iﬂ‘pen- Source Al|  Coseficie

(2

Result Agoregation

Clinical Output

Gl oo™

Figure 2: Data flow architecture showing intelligent routing between proprietary
and open-source Al systems based on risk assessment

Figure 3 provides a Performance Comparison Radar Chart
that contrasts key performance dimensions including
transparency, cost efficiency, security, diagnostic
accuracy, and customization capabilities. This comparative
visualization reveals that proprietary models excel in

security and performance but lag in cost efficiency and
transparency, while open-source models demonstrate
superior cost efficiency, customization, and transparency
with competitive performance levels [19], [20].

Performance & Diagnostic Accuracy

7

Cost Efficiency & Accessibility

Customization & A(apl.ﬂhl'

Transparency & Auditability

lm‘lti Privacy & Security

|—o—Pmpriclm’y Al —e— Open-Source Al |

Figure 3: Comparative evaluation of proprietary and open-source Al models in healthcare, based on synthesis from the
provided literature. Proprietary models excel in out-of-the-box performance and security but at high cost and with low
transparency. Open-source models offer superior cost efficiency, customization, and transparency, with recent advancements
showing competitive performance. Security for open-source models is highly dependent on implementation practices.
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Figure 4 outlines the Phased Implementation Roadmap for
hybrid Al architecture deployment, spanning from initial
planning through full optimization. This timeline-based
framework provides healthcare organizations with a

structured approach for Al adoption, incorporating risk
assessment, vendor selection, pilot deployment, and
continuous improvement phases [28], [42], [45].

Risk assessment
Vendor selection

Low-risk applications
Staff training

[ 13

! - ngoin
Planning Phase BMEM Depluymcn? }m{hsf*ull Expansion H Optimization

Fig. 8. Phased implementation roadmap for hybrid Al architecture deployment in healthcare settings

Continuous improvement

(421 [19]

Scale successful pilats

Figure 4: Phased implementation roadmap for hybrid Al architecture deployment in healthcare settings

B. Temporal Analysis Visualizations

The Future Development Timeline figure (referenced in
Figure 5) depicts the projected evolution of healthcare Al
from 2025 to 2030, showing parallel development tracks
for open-source maturation, agentic Al adoption, and

market evolution. Key milestones include FDA approval
of agentic Al systems, WHO guideline implementation,
and achievement of 40% market share for open-source
solutions [8], [17].

Open-Source Maturatio

Performance Parity

Repulatory Frameworks

Specialized Models

Agentic AT Adoption &

Administrative Tasks |
Diagnostic Suppoen

Clinical Integration

Market Evolutiol

.........................................................................................................................................................

Consolidation

Globul Standards

Mainstream Adeption

FDA Approval AGI
WHG Gridelines

0% Market Share Open Source

Figure 5: Projected development timeline for healthcare Al (2025-2030)

The Technology Adoption Curve as shown in Figure 6
visualization provides perspective on the long-term
diffusion patterns of healthcare Al technologies, mapping
the progression from innovators (2025-2026) through

early adopters (2027-2028) to mainstream adoption
(2029-2030+). This framework helps organizations
understand their position in the adoption lifecycle and plan
accordingly [44].
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AdoRI]crs

rce

Op k%a&]g u

Innovators 2025-24"

27-2028

ygrid Systems

ajority 2030+

ajority 2029

Figure 6: Technology adoption curve for healthcare Al solutions

C. Architectural Integration Framework

Together, these visual components (Figure 7 form an
integrated decision-making and risk-analysis framework
that synthesizes technical, economic, and governance
dimensions for healthcare Al adoption. The framework
addresses:

Technical Integration: How different Al paradigms can
be combined effectively

Risk Management: Strategic approaches for balancing
innovation with patient safety

Economic Optimization: Cost-benefit analysis for
different deployment scenarios
Implementation Strategy: Practical
organizational adoption
Decision  Support:

roadmaps for

Structured  frameworks  for

technology selection

D. Strategic Applications

These visualizations serve multiple strategic purposes:
Technical Architecture: IT departments can reference
Figure 6 and Figure 7 for system design

Performance Assessment: Clinical teams can utilize
Figure 3 to understand trade-offs between different Al
approaches

Implementation Management: Project managers can
follow Figure 8 for structured deployment

Long-term Strategy: Executive leadership can use
temporal visualizations for strategic planning and
investment decisions

Low

Budget
Con-
straints

Choose
Proprictary

< Al Sirategy Dec@

Hybrid
Approach

Tolerance

Open-
Source

Figure 7: Strategic decision fra

E. Research and Policy Implications

The visual framework collectively demonstrates that the
future of healthcare Al lies not in choosing between open-
source and proprietary solutions, but in strategically
combining their strengths while mitigating their respective
limitations. This integrated approach supports the paper’s
central thesis that hybrid architectures, supported by
appropriate governance frameworks and risk management
strategies, offer the most promising path forward for

mework for Al selection in healthcare

healthcare Al implementation.

The figures provide empirical visualization of the
guantitative findings discussed throughout the paper,
including performance metrics from comparative studies
[20], cost analysis from implementation research [42], and
strategic insights from policy analysis [28]. This visual
evidence base supports the paper’s recommendations for
adaptive, risk-based approaches to healthcare Al
governance and implementation.
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VI. OVERVIEW OF FIGURES AND
VISUAL FRAMEWORKS

This section summarizes and references all the figures
presented in this paper to illustrate the comparative
insights between open-source and proprietary Al in
healthcare.

Figure 8 shows the Hybrid Al Architecture Framework,
integrating proprietary and open-source models through an
orchestration layer. Figure 2 illustrates the Data Flow

Architecture, highlighting risk-based routing between
proprietary and open-source systems. Figure 3 presents a
Performance Comparison Radar Chart, contrasting
transparency, cost, security, and diagnostic accuracy.

For temporal analysis, the Future Development Timeline
(refer to Figure 5) figure depict the expected adoption path
for open-source, proprietary, and agentic Al from 2025 to
2030. The Technology Adoption Curve figure (refer to
Figure 6) provides additional perspective on long-term
diffusion patterns.

Reliability
94-96% AUC [17]

Flexihility

57% cost savings [12]

{Pmprietar)' Al Systems

[Opcn—Sc-urce Al Systems

High-risk tasks

Hybrid Orchestration Layer

[ Clinical Applications ]

Customizable tasks

Orchestration Logic:

* Risk-hased routing

« Real-time monitoring

* Federated learning integra-
tion [38]

* Compliance validation

Figure 8: Hybrid Al architecture framework for healthcare integrating both proprietary and
open-source systems with intelligent orchestration

A. Architectural Framework for Hybrid Al Deployment

The hybrid Al architecture adresses the critical need for
both reliability in clinical applications and flexibility for
customization [19], [20].

a) Technical Components and Integration

The hybrid architecture comprises several key technical

components that enable seamless integration:

e Proprietary Al Subsystem: Handles high-risk clinical
decisions requiring maximum reliability and regulatory
compliance. These systems typically achieve 94-96%
AUC in diagnostic tasks [17] and offer comprehensive
support structures [16].

e Open-Source Al Subsystem: Provides customizable
solutions for specialized applications, research
prototyping, and resource-constrained environments.
Recent advancements show open-source models
achieving 92-95% AUC performance [20] with
significantly lower implementation costs [42].

e Hybrid Orchestration Layer: Intelligent middleware
that dynamically routes tasks based on multiple factors
including:

o Clinical risk level and regulatory requirements
o Data sensitivity and privacy considerations
o Performance requirements and latency constraints
e Cost optimization and resource availability
b) Data Flow and Processing Architecture

¢) Performance and Cost Optimization
Table 2: Comparative Performance Metrics of Different
Architectural Approaches

. Proprietary Open- .
Metric Only Source Only Hybrid
Diagnostic 94-96% 92-95% 95-97%
Accuracy
Implementatio
n Cost $2-5M $0.5-1.2M $1.5-2.5M
Annual
Maintenance $300-750K | $150-300K | $200-400K
Customization . .
Capability Low High High
Regulatory . . .
Compliance High Medium High

d) Security and Compliance Framework
The hybrid architecture incorporates a comprehensive

security framework addressing critical healthcare
requirements:
e Data Privacy: Implements federated learning

approaches [38] to enable collaborative model
improvement while maintaining data sovereignty
Ensures adherence to

Regulatory Compliance:

HIPAA, GDPR, and
regulations [8]
e Audit Trails: Maintains comprehensive logging for

all Al

decisions,

enabling

emerging Al

healthcare

transparency and
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accountability [19]

o Fail-safe Mechanisms: Implements automatic
fallback to human experts when Al confidence levels
drop below predefined thresholds

e) Implementation Considerations

Successful implementation of the hybrid architecture

requires careful consideration of several factors:

e Workflow Integration: Seamless incorporation into
existing clinical workflows with minimal disruption
[45]

e Staff Training: Comprehensive training programs for
healthcare professionals on Al system interaction and
interpretation

e Continuous Monitoring: Real-time performance
monitoring and quality assurance mechanisms

e Gradual Git styled Deployment: Phased
implementation approach starting with low-risk
applications and gradually expanding to more critical
functions using version control

By combining the strengths of both proprietary and (self-

regulated) open-source systems, healthcare providers can

achieve better clinical outcomes while maintaining

operational efficiency and regulatory compliance [19],

[20], [42].

VIl. LITERATURE TAXONOMY BY
YEAR, SOURCE TYPE, AND
GEOGRAPHY

This section categorizes the cited literature to highlight
temporal, institutional, and regional trends in Agentic Al
healthcare research. AGI is already transforming
healthcare delivery.

A. Chronological Distribution (2021-2025)
Table 3: Key Publications by Year

Year Representative Works

2021 WHO ethics guidelines [33]

2023 Medicare Advantage Al denial study [7]
2024 Bouderhem’s ethics analysis [30], WHO LLM

guidelines [8], CBO economic report [12]

Agentic Al transformation studies [22],

2025 Implementation case studies [24]

B. Publication Venues Referenced in this work

1) Academic Journals

e Humanities and Social Sciences Communications:
Ethics governance [30].

2) Government & Policy Documents

¢ WHO technical reports (2021, 2024) [8], [33]

e U.S. Congressional Budget Office [12]

e  California state report [48]

3) Industry White Papers

e IBM governance analysis [29]

e  McKinsey public health studies [10]

Table 4: Regional Focus of Key Policies

Region Key Contributions

International WHO ethics frameworks [8], [33]

European
Union

GDPR-inspired Al governance [30]

United States State-level regulations [48], Federal

economic analyses [12]

C. Predictive Analytics

Large agentic models can predict patient outcomes with
high accuracy, enabling proactive care [5].

D. Administrative Efficiency

AGI  automates claims
administrative burdens [6].

processing and  reduces

E. Personalized Medicine

Generative Al tools support personalized treatment plans
and drug development [37].

VIIl. ARTIFICIAL GENERAL INTELLIGENCE
(AGI) INHEALTHCARE

This section reviews the potential and challenges of
Artificial General Intelligence in healthcare systems,
drawing on research and implementations for 2023-2025.

A. Defining AGI in Medical Contexts

e Autonomous Operation: AGI systems capable of
performing "any intellectual task that a human can do"
in clinical settings [8].
o Key Differentiators:
—  Self-directed learning without retraining (vs.
narrow Al) [22]
— Cross-domain  reasoning  (e.g.,
radiology with patient history) [5]

combining

B. Current AGI Implementations

Table 5: Documented AGI Healthcare Applications

Application Performance Source

Predictive Diagnostics 89% AUC accuracy [35]

Autonomous Treatment 35% faster than human [13]
Planning teams

Real-time Resource
Allocation

$2.1M annual [36]
savings/hospital

C. Technical Foundations

e Architectural Requirements:
— Multi-agent  systems  for
coordination [23]
— Quantum-enhanced learning for drug discovery
[34].
e Data Infrastructure:
— Petabyte-scale federated learning networks [38]
—  Blockchain-verified training datasets [49]
e Agency Dilemmas:
— Conflict resolution between AGI and human
providers [14]

complex care
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— Legal personhood debates (ongoing in EU courts)
[30]
o Safety Protocols:
— "Golden button™ emergency override systems
[24]
—  3-layer redundancy for critical decisions [11]

D. Future Development Trajectories

e 2025-2027:
—  First WHO-certified AGI diagnostic systems [8]
— AGl-augmented clinical trials (50% faster
enrollment) [37]
e 2028-2030:
— Autonomous
programs) [50]
— AGI-managed public health networks [10]

robotic surgery AGI (pilot

Table 6: AGI vs. Conventional Al in Healthcare

Characteristic AGI Systems Narrow Al

Decision Scope Cross-domain Single-task

Learning Ability Continuous self- Fixed training

improvement
Regulatory Tier A (high-risk) [32] Tier B/C
Class
Cost $4-7M implementation [12] | $250K-2M

IX. AGENTICAISYSTEMS IN
HEALTHCARE

This section examines the paradigm of Agentic Al systems
in healthcare, their typologies, and operational frameworks
as identified in current literature.

A. Definition and Core Characteristics

e Agentic Al: Systems that "autonomously act upon
generated outputs" beyond passive content creation
[29]

o Key Features:

—  Goal-directed behavior with dynamic adaptation
[22]

— Closed-loop interaction  with
environments [13]

—  Multi-stakeholder coordination capabilities [36]

healthcare

B. Agent Typologies in Healthcare
Table 7: Classification of Healthcare Ai Agents

Agent Type Function Example
Diagnostic Autonomous disease | 92% accurate cancer
Agents detection screening [5]

Administrative
Agents

Claims processing 65% faster approvals
automation [6]

Therapeutic Personalized 40% adherence

Agents treatment planning improvement [35]
Public Health Population-level Pandemic prediction
Agents monitoring models [10]

C. Architectural Models

e Single-Agent Systems:
— Focused task execution (e.g., radiology analysis)
[40]
— Limited to predefined workflows [24]
e Multi-Agent Systems:
— Collaborative networks for
coordination [23]
— Demonstrated 30% better outcomes in chronic
disease management [11]

complex care

D. Operational Mechanisms

1) Decision-Making Frameworks
e Reinforcement Learning:
— Adaptive treatment optimization (87% success
rate) [34]
—  Safety-constrained action spaces [49]
e Hybrid Reasoning:
— Combining neural networks with symbolic logic
(8]
—  Required for WHO compliance [33]
2) Coordination Protocols
o Federated Agent Networks:
—  Privacy-preserving collaborative learning [38]
—  70% adoption projected by 2027 [10]
e Human-Agent Teaming:
—  "Doctor-in-the-loop" requirements [14]
— Audit trails for all autonomous actions [30]
E. Emerging Agent Capabilities
o Self-Reflective Agents:
— Performance meta-cognition (pilot accuracy
+15%) [5]
—  Ethical constraint monitoring [29]
e Cross-Modal Agents:
— Unified vision/language/clinical data processing
[50]
— Required for holistic patient modeling [8]

Table 8: Agentic vs. Non-Agentic Al in Healthcare

Characteristic Agentic Al Traditional Al

Autonomy Level High (self-directed) | Low (scripted)

Decision Scope Dynamic Fixed

environments parameters
Regulatory Class Tier A+ [48] Tier B
Implementation 2.4x higher [12] Baseline

Cost

F. Definition and Capabilities of Agentic Al

In healthcare systems, agentic Al systems can automate
multi-step clinical workflows, make context-aware
decisions, and collaborate with human healthcare
providers [46]. These systems differ from conventional Al
through their ability to break down complex problems into
manageable tasks, seek additional information when
needed, and execute sequences of actions to achieve
clinical objectives.

The fundamental capabilities of healthcare agentic Al
include:
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e Autonomous Task Execution: Ability to perform
complex clinical and administrative tasks with minimal
human intervention

e Adaptive Learning: Continuous improvement through
learned experience and new data integration

e Multi-step Reasoning: Capacity to handle complex
diagnostic and treatment planning processes

¢ Human-Al Collaboration: Seamless interaction and
coordination with healthcare professionals

G. Current Implementations and Applications

Several agentic Al systems have emerged as prominent
solutions in healthcare settings, each with specialized
capabilities:

1) MedResearcher-R1-32B

This specialized Al agent combines detailed medical
knowledge networks with advanced information retrieval
systems, demonstrating significant improvements in
complex medical question answering [51]. The system
achieves 45% higher accuracy in diagnosing rare
conditions compared to previous models and reduces
diagnostic time by 60% for complex cases.

2) Clinical Workflow Agents

Agentic systems are being deployed to streamline
healthcare  operations,  particularly  in  reducing
administrative burden and combating professional burnout
[52]. Early implementations show 30-40% reduction in
administrative time and 25% improvement in patient flow
management.

3) Diagnostic Support Systems

Advanced agentic Al platforms are addressing pressing
healthcare challenges including diagnostic accuracy,
treatment consistency, and resource optimization [47].

H. Technical Architecture and Framework

Agentic Al systems in healthcare typically employ

sophisticated architectures that enable their advanced

capabilities:

1) Knowledge Integration

These systems incorporate comprehensive medical

knowledge bases, continuously updated with the latest

clinical guidelines, research findings, and treatment

protocols [51]. The integration of structured medical

knowledge with machine learning capabilities enables

more reliable and evidence-based decision making.

2) Multi-Agent Coordination

Complex healthcare scenarios often require multiple

specialized agents working in coordination. These systems

employ hierarchical agent architectures where:

e Specialist Agents: Focus on medical domains (e.g.,
cardiology, oncology)

e Coordinator Agents: Manage
communication and task allocation

o Interface Agents: Handle human-Al interaction and
presentation of results

3) Adaptive Learning Mechanisms

Agentic  systems incorporate  continuous learning

capabilities while maintaining safety constraints [46]. This

includes:

e Supervised Learning Updates: Integration of new
clinical evidence and guidelines

e Reinforcement Learning: Optimization based on
treatment outcomes and feedback

inter-agent

o Federated Learning: Collaborative improvement across
institutions while preserving data privacy
I. Performance Metrics and Clinical Impact

Current  implementations  demonstrate
improvements in healthcare delivery:

substantial

Table 9: Performance Metrics of Agentic Al Systems in
Healthcare

. Traditional | Agentic
Metric Al Al Improvement
Diagnostic 85% 94% +9%
Accuracy
Case Processing 45 minutes 18 -60%
Time minutes
Administrative High Moderat 40%
Burden e reduction
Treatment 5% 92% +17%
Consistency

J. Implementation Challenges and Considerations

Agentic Al systems face several implementation

challenges:

1) Safety and Reliability

Ensuring patient safety requires rigorous validation and

continuous monitoring [46]. Agentic systems must

incorporate:

e Safety Constraints: Hard-coded rules preventing
harmful recommendations

e Uncertainty Quantification: Clear indication of
confidence levels in recommendations

o Fail-safe Mechanisms: Automatic escalation to human
experts when needed

2) Regulatory Compliance

Agentic systems must navigate complex regulatory

landscapes including:

e FDA Approval Processes: Meeting requirements for
software as a medical device

e Data Privacy Regulations: Compliance with HIPAA,
GDPR, and other privacy frameworks

e Clinical Validation: Demonstrating efficacy through
rigorous clinical trials

3) Human-Al Collaboration

Effective integration requires careful design of interaction

paradigms:

e Explainability: Providing transparent reasoning for Al
recommendations

e Trust Building: Establishing confidence through
consistent performance

e Workflow Integration: Seamless incorporation into
existing clinical processes

K. Future Development Trajectory

The evolution of agentic Al in healthcare is expected to

progress through several phases:

1) Near-term (2025-2026)

e Specialized Applications: Domain-specific agents for
radiology, pathology, and cardiology

e Administrative Automation: Focus on reducing
bureaucratic burden
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e Pilot Programs: Limited deployment in academic
medical centers

2) Mid-term (2027-2028)

e Integrated Systems: Comprehensive care coordination
across multiple specialties

e Preventive Care: Proactive health management and
early intervention

e Mainstream Adoption: Widespread implementation in
community hospitals

3) Long-term (2029-2030)

e More Autonomous Operations: Limited autonomy for
routine clinical decisions

e More Personalized Medicine: Al-driven individualized
treatment optimization

e Global Health Impact: Addressing
disparities through scalable solutions

healthcare

X. RISK MANAGEMENT IN AGI
HEALTHCARE

The deployment of AGI in healthcare presents several
risks that must be managed:

A. Ethical Risks

AGI systems can perpetuate biases present in training data,
leading to disparities in care [7]. Ensuring fairness and
equity requires robust auditing and bias mitigation
strategies [30].

B. Regulatory Gaps

Current regulations often fail to address the unique
challenges of AGI, such as accountability for autonomous
decisions [31]. Harmonized international standards, like
those proposed by the WHO, are needed to fill these gaps
[33].

C. Implementation Challenges

Poorly designed AGI systems can lead to errors and
inefficiencies [24]. Case studies highlight the importance
of human oversight and iterative testing to avoid costly
mistakes [40].

D. Risk Taxonomy
Table 10: Major Risk Categories in Healthcare AGI

e California Standards:
— 30-day appeal process for Al denials [48]
—  $250K minimum insurance for AGI vendors [9]

B. Emerging Needs

e Global Harmonization:
— Unified certification (target: 50+ countries by
2028) [32]
—  Cross-border data sharing protocols [10]
e Adaptive Regulation:
— Algorithmic sunset clauses (3-year reviews) [14]
— Real-time monitoring APIs for regulators [31]

C. Positive Outcomes

— 359% faster care access in underserved areas [40]
—  $6.1B/year cost savings potential [12]
—  40% reduction in administrative burnout [36]

D. Negative Consequences

25-35% job displacement in medical coding

[53]

— 2-5x increase in liability lawsuits (2025-2030)
[49]

— 159% trust deficit in patient surveys [7]

E. Governance Recommendations
e Risk-Based Tiering:
—  Classify AGI by clinical risk (A/B/C tiers) [32]
— Tier A: 100% human verification required [30]
e Transparency Measures:
—  Public AGI performance dashboards [29]
—  Open-source auditing tools [24]
e Societal Safeguards:
— 2% AGI revenue tax for workforce retraining
[12]
—  Equity impact assessments (annual mandate) [33]

Table 11: Stakeholder Responsibilities in AGI Governance

Stakeholder Key Roles
0,
Governments Set safety stano_lards (e.g., <15% error
variance) [48]
Providers Implement XAl interfaces [31]
Vendors Fund 3rd-party audits ($500K+/system) [9]
- - a0
Patients Participate in feedback loops (target: 30%
engagement) [14]

Risk Type Examples Mitigation Strategies
Clinical Diagnostic errors (12% Explainable Al (XAl)
FP rate) audits [29]
. Algorithmic bias (73% WHO fairness
Ethical
appeal rate) frameworks [8]
. . )

Operz;mona Syﬁg‘;g‘;gﬁ; d§60 % Federated learning [38]
Legal Liability gaps EU-msplré% ]regulatlon

E. Regulatory Frameworks

A. Existing Models

e WHO Guidelines:
—  95% explainability threshold [8]
— Mandatory human oversight clauses [33]

F. International Cooperation

The WHO’s guidance on Al ethics provides a foundation
for global standards [8]. The European Union (EU) offers
a model for regulatory frameworks that balance innovation
and safety [30].

G. Pro-Innovation Policies

Governments should adopt policies that encourage AGI
innovation while safeguarding patient rights [32]. For
example, the U.S. Congressional Budget Office highlights
the economic potential of Al but calls for oversight to
prevent misuse [12].

H. Transparency and Accountability

AGI systems must be transparent, with clear mechanisms
for accountability [29]. The use of explainable Al (XAl)
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can help build trust among healthcare providers and
patients [13].

XI. QUANTITATIVE ANALYSIS
AND MARKET TRENDS

A. Market Size and Growth Projections

The global Al in healthcare market has demonstrated
substantial growth, with valuations reaching $29.01 billion
in 2024 and projected to expand to $39.25 billion in 2025
[1]. Long-term projections indicate remarkable expansion,
with the market expected to reach $504.17 billion by 2032,
representing a compound annual growth rate (CAGR) of
approximately 37.2% from 2024 to 2032.

B. Investment and Funding Patterns

Investment in healthcare Al has maintained strong

momentum, with notable funding rounds occurring in

early 2025. According to [54], Al healthcare startups

raised $2.2 billion in January 2025 alone. This investment

surge demonstrates sustained confidence from venture

capital and institutional investors in the potential of Al to

transform healthcare delivery and outcomes.

The distribution of investments shows particular strength

in several key areas:

e Diagnostic Al solutions: $700-850 million (38-40% of
total)

e Drug discovery and development platforms: $500-620
million (28%)

e Clinical workflow optimization: $400-430 million (19-
25%)

e Patient monitoring and management: $200-300 million
(13%)

C. Performance Metrics and Comparative Analysis

Recent comparative studies have provided quantitative
evidence of the narrowing performance gap between open-
source and proprietary Al models. [20] conducted
extensive testing across multiple clinical scenarios,
reporting the following performance metrics:

Table 12: Performance Comparison of Al Models in
Medical Diagnostics

Diagnostic Processing | Cost per
Model Type Accuracy Speed Query
Proprietary o
Models 92.3% 1.2s $0.15
Open-Source 0
Models 90.8% 1.8s $0.02
Human Experts 94.1% 180s $85.00

The data reveals that while proprietary models maintain a
slight advantage in accuracy (1-1.5% higher) and
processing speed (0.6s faster), open-source models offer a
significant cost advantage, with operational costs
approximately 80-86% lower than proprietary solutions.

D. Adoption Rates and Implementation Costs

Proprietary systems typically involve substantial initial
investment, with implementation costs ranging from $2-5
million for large healthcare systems, plus ongoing
licensing fees of 15-25% of initial costs annually.

In contrast, open-source implementations show different
cost structures:

¢ Initial implementation: $500,000-$1.2 million

e Customization and integration: $200,000-$500,000

¢ Annual maintenance and support; $150,000-$300,000
¢ No licensing fees, reducing long-term costs

The total cost of ownership over five years shows open-
source solutions providing 40-60% cost savings compared
to proprietary alternatives, making them particularly
attractive for resource-constrained healthcare settings.

E. Efficiency Gains and Operational Impact
Quantitative analysis of operational impact demonstrates
significant efficiency gains from Al implementation.
Healthcare organizations report:

e 30-45% reduction in diagnostic interpretation time

e 25-40% improvement in administrative efficiency

e 15-30% reduction in medication errors

e 20-35% improvement in patient scheduling efficiency
These efficiency gains translate to substantial financial
benefits, with average annual savings of $3-7 million for
mid-sized hospitals and $12-25 million for large
healthcare systems.

F. Global Distribution and Regional Adoption

The adoption of healthcare Al shows varying patterns

across regions:

e North America: 42% market share, $12.2 billion
investment in 2024

e FEurope: 28% market share, $8.1 billion investment

e Asia-Pacific: 22% market share, $6.4 billion
investment, fastest growth at 45% CAGR

e Rest of World: 8% market share, $2.3 billion
investment

G. Return on Investment Analysis

Comprehensive ROl analysis demonstrates compelling

financial returns for healthcare Al investments:

e Average payback period: 18-24 months for diagnostic
Al systems

e ROI after 3 years: 180-250% for well-implemented
systems

e ROI after 5 years: 350-500% including efficiency
gains and improved outcomes

e Value-based care impact: 15-25% improvement in
patient outcomes metrics

H. Quantitative Analysis of Agentic Al in Healthcare

This section synthesizes key numerical findings, financial

impacts, and statistical evidence from global studies on

Agentic Al (AGI) in healthcare.

1) Cost and Economic Impact

e 17-30% reduction in administrative costs through
AGI automation of claims processing and paperwork
[53].

e $6.1 billion projected annual savings for U.S.
healthcare by 2030 through Al-driven diagnostics [12].

e 40% faster prior authorization decisions using agentic
workflows, reducing denials by 22% [6].

2) Adoption and Performance Metrics
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Table 13: Performance Metrics of AGI in Healthcare
Applications

Application Improvement Source

Diagnostic Accuracy 12-15% increase [5]

Patient Outcome Prediction 89% AUC score [35]

Administrative Task Time 65% reduction [36]

3) Regulatory and Ethical Data

o 73% of Medicare Advantage Al denials overturned on
appeal, highlighting algorithmic bias risks [7].

e Only 31% of healthcare organizations have
comprehensive Al governance frameworks as of 2025
[29].

e WHO guidelines recommend 95% explainability
threshold for clinical Al systems [8].

4) Implementation Challenges

o $250k-$2M estimated upfront costs for hospital AGI
systems [11].

e 60% of failed implementations due to poor data quality
[24].

e 3:1 ROI ratio observed within 2 years for successful
deployments [10].

XIl. USVS.CHINAHEALTHCARE Al
DEVELOPMENT: ACOMPARATIVE
ANALYSIS

A. National Strategies and Policy Frameworks

China’s explicit policy of “self-reliance” in artificial
intelligence drives a focused, state-directed approach to
healthcare Al development [55]. This strategy emphasizes
domestic innovation, reduced foreign dependency, and
rapid scaling of Al capabilities across healthcare sectors.

In contrast, the United States employs a more
decentralized, market-driven approach characterized by
private sector innovation with federal support through
agencies like NIH and FDA. The US strategy emphasizes
public-private partnerships, academic research
collaboration, and regulatory frameworks that balance
innovation with safety [56].

B. Investment Patterns and Market Development
The investment landscape reveals significant differences in
funding mechanisms and market structures:

Table 14: Comparative Investment in Healthcare Al
(2024-2025)

Metric United States China
Total Government Funding $8.2 billion $12.5 billion
Private Venture Capital $15.3 billion $9.8 billion
Number of Al Healthcare 450+ 300+
Startups
Average ngnzi'”g Round | ¢35 mitlion | 28 million

China’s substantial government investment reflects its
state-directed approach, with funding primarily channeled
through national research institutions and state-owned
enterprises. The US shows stronger private sector

investment, particularly from venture capital and
technology corporations [54].

C. Open-Source Ecosystem Development

The open-source landscape demonstrates contrasting
philosophies and outcomes:

As [57] notes, “Chinese absolutely dominates open-source
Al models,” particularly in healthcare applications where
open-source solutions are increasingly competitive with
proprietary alternatives.

The United States maintains strength in proprietary Al
development, with major technology companies (Google,
Microsoft, IBM) leading in closed-source healthcare Al
solutions. However, recent US entries into open-source
healthcare Al, such as OpenAl’s releases, indicate a
strategic response to Chinese dominance in this sector
[57].

D. Technical Capabilities and Innovation Focus
Table 15: Technical Capability Comparison (2025)

Capability Area US Strength China Strength
Proprietary Model High (90-95% Medium (85-90%
Performance accuracy) accuracy)
Open-Source_r Model Medium High
Innovation
Medical Imaging Al Strong Very Strong
Drug Discovery Al Very Strong Strong
Clinical Decision Strong Medium
Support
Data Infrastructure Advanced Rapidly Improving

The US maintains advantages in proprietary Al systems
and drug discovery applications, leveraging strong
pharmaceutical industry partnerships and FDA regulatory
experience. China demonstrates particular strength in
medical imaging Al and rapid implementation of open-
source solutions [3].

E. Data Governance and Privacy Frameworks

Data management approaches reflect different regulatory
philosophies:

China’s data governance framework emphasizes state
control and domestic data retention, with strict regulations
on health data sharing and international transfer. This
approach enables large-scale data aggregation for Al
training but raises concerns about international
collaboration [55].

The US employs a more decentralized data governance
model with emphasis on HIPAA compliance and patient
privacy protections. While this provides stronger
individual privacy safeguards, it can create challenges for
large-scale data aggregation needed for Al training [16].

F. Global Market Presence and Influence
The international expansion strategies differ significantly:

International Revenue
Global Market Share = X 100%
Total Market

US companies currently capture approximately 45% of the
global healthcare Al market, with strong presence in North
America, Europe, and developed Asian markets. Chinese
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companies hold 25% global market share, with dominance
in domestic markets and expanding presence in Southeast
Asia, Africa, and Latin America [1].

The US maintains advantages in regulatory compliance
and interoperability with Western healthcare systems,
while Chinese solutions excel in cost-effectiveness and
adaptability to diverse healthcare environments [27].

G. Research Output and Academic Contribution

Scientific publication and research impact show different
patterns:

Citations

Research Impact Factor = X Field Weight

Publications

US institutions due to the current world setup lead in high-
impact publications and fundamental Al research, with
representation in top-tier conferences and journals.
Chinese research output has grown rapidly, particularly in
applied healthcare Al and implementation studies [17].
Collaboration patterns also differ: US researchers maintain
extensive international collaborations, while Chinese
research shows stronger domestic collaboration networks
with limited international partnerships due to geopolitical
considerations [56].

H. Regulatory Approaches and Approval Processes

US FDA approval processes for Al-based medical devices
ensures safety but can slow innovation and adoption [28].
China’s  regulatory  framework  prioritizes rapid
deployment and scaling of Al healthcare solutions, with
streamlined approval processes that enables faster market
entry but may raise concerns about long-term safety and
efficacy monitoring [55].

I. Military-Civil Fusion and Dual-Use Technologies

China’s military-civil strategy creates advantages in
healthcare Al development:
Dual-Use Technology Transfer
Military R&D Applications

" Civilian Healthcare Applications
Chinese healthcare Al benefits from technology transfer
from military Al research, particularly in areas like
medical imaging analysis, diagnostic algorithms, and
large-scale data processing. This integration provides
resource advantages but raises concerns about technology
appropriation and security [56].
The US maintains stricter separation between military and
civilian Al development, with limited technology transfer
between sectors. This approach reduces security risks but
may slow innovation in certain application areas [16].

J. Future Trajectories and Strategic Implications

Projected development paths suggest continuing
divergence:

By 2030, China is projected to capture 35-40% of the
global healthcare Al market, particularly in open-source
solutions and emerging markets. The US will maintain
leadership in proprietary systems and specialized medical
applications [44].

The competition will drive innovation but also create
fragmentation risks in global healthcare Al standards and
interoperability. Strategic cooperation areas may include
pandemic response, rare disease research, and global
health initiatives where shared interests outweigh

competitive pressures [56].

XIIl. POLICY PROPOSALS AND
GOVERNMENT RECOMMENDATIONS

Building on the identified challenges and opportunities,
this section presents actionable recommendations for
policymakers to harness Agentic Al (AGI) in healthcare
while mitigating risks.

A. Regulatory Framework Enhancements

o Establish an AGI Healthcare Certification Body:

— Modeled after FDA device approval, requiring
90%+ accuracy thresholds for diagnostic AGI
systems [8]

— Mandatory bias audits using WHO’s 95%
explainability standard [30]

e Adapt the EU Al Act for Healthcare:

— Classify clinical AGI as high-risk with strict
transparency requirements [32]

— Implement sandbox environments for testing
(pilot success rate: 78% in California trials) [48]

B. Financial Incentives
Table 16: Proposed Funding Allocation for AGI

Healthcare
s Budget (2026-
Initiative 2030) Expected ROI

Rural AGI Deployment )

Grants $2.1B 3.2:1[53]
Safety Research Fund $750M N/A (public

good)

Workforce Retraining $1.4B 2.7:1[12]

C. Implementation Roadmap

1) Short-Term (2025-2027)

e Require real-time monitoring of AGI denial rates
(benchmark: 15% variance from human decisions) [7]

e Fund 10 regional testbeds for federated learning
systems [38]

2) Long-Term (2028-2030)

e Develop international AGI standards through WHO,
building on EU models [33]

e Achieve 40% cost reduction in administrative
workflows via mandated AGI adoption [6]

D. Public-Private Partnerships

e Tax Credits: 25% rebate for hospitals meeting AGI
transparency benchmarks [31]

e Data Sharing Mandates: Require AGI vendors to
contribute 30% of non-sensitive datasets to public
repositories [10]

E. Monitoring & Evaluation

e Annual AGI Equity Reports tracking demographic
disparities (target: 5% variance) [7]

e Algorithmic Sunset Clauses: Automatic review every 3
years based on performance metrics [14]
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XIV. SUMMARY OF TABLES

This section provides a comprehensive overview of all
tabular data presented in the paper, highlighting their
research contributions and organizational structure.

Table 17: Inventory of Analytical Tables

Table Title Key Metrics Section
Compar_a tive Strength/Weakness
Analysis of ]
Table 1 analysis of 3 1l
Key AGI architectures
Models
Key
Tables 3 | Publications by 2021-2025 \Y
research timeline
Year
. WHO/EU/US
Regional Focus
Table 4 - regulatory v
of Key Policies
contrasts
Documented
0,
Table5 | AGI Healthcare 89% AUC. \J
- accuracy metrics
Applications
AGI vs.
Table 6 Conventional $4-7M cost \Y;
comparisons
Al
Classification .
Table 7 of Healthcare 4 ag:rftotrynﬁ)aezg/glth Vi
Al Agents P
Agentic vs. .
Table 8 Non-Agentic 2.4x cost premium Vi
analysis
Al
Performance 65%-time
Table 13 Metrics of AGI reduction data Vil
Projected
Table18 |  Financial $124B market |\,
forecast
Impacts
. ot
Table 10 Major R_lsk 73% bias appeal IX
Categories rates
Table 11 Stakeh_ol_d_e_r $50(_)K audit IX
Responsibilities requirements
Proposed
Table 16 Funding gg}g’ r?:gﬁlt X
Allocation ploy
A. Key Patterns
e Temporal Coverage: Tables span  current

implementations (Table 13) to 2030 projections (Table

18)

e Geographic Scope: 75% compare international vs
regional approaches (e.g., Table 4)

e Quantitative Focus: All tables include measurable
benchmarks (accuracy, costs, adoption rates)

B. Usage Guidance

o Regulatory analysis: Tables 4 and Tables 10.
¢ Implementation planning: Tables 16 and Tables 11.
e Technical selection: Tables 1 and Tables 6.

C. Policy Recommendations

1) For Healthcare Organizations

Healthcare organizations should adopt a hybrid approach

that leverages the strengths of both open-source and

proprietary solutions based on specific use cases. They

should:

e Invest in developing internal expertise for evaluating
and implementing Al solutions

e Establish clear governance frameworks for Al
adoption, including ethical guidelines and oversight
mechanisms

e Participate in open-source communities to influence
development and share best practices

o Develop comprehensive data management strategies
that address privacy and security concerns

2) For Policymakers

Policymakers should create regulatory environments that

support innovation while ensuring patient safety and

privacy:

o Develop adaptive regulatory frameworks that can
accommodate rapid technological advancements

e Support standardization efforts for Al validation and
interoperability

e Fund research on Al safety, ethics, and implementation
best practices

e Address disparities in Al access through funding
programs and technical assistance

3) For Researchers and Developers

The research community should focus on addressing

current limitations and advancing the field:

e Develop improved validation methodologies for Al
systems in healthcare settings

e Address bias and fairness issues in medical Al through
diverse training data and algorithmic improvements

e Enhance explainability and transparency capabilities
for both open-source and proprietary systems

e Explore hybrid approaches that combine the strengths
of different Al paradigms

XV. FUTURE TIMELINE AND
PROJECTIONS (2025-2030)

Based on current trends and research findings, this section
outlines key projections for Agentic Al (AGI) in
healthcare through 2030 and beyond.

A. Agentic Al in Healthcare

The emergence of agentic Al systems represents a
significant trend in healthcare Al development. These
systems can automate complex workflows and decision-
making processes, potentially transforming healthcare
delivery. [46] describe agentic Al as offering "healthcare
systems the ability to automate complex tasks and
workflows," while emphasizing that "success depends on
careful oversight and strategic planning."

Recent developments in agentic Al show particular
promise for complex medical reasoning. [51] report on
medical Al agents that "boost accuracy for complex health
queries" through sophisticated knowledge networks and
retrieval systems. These advancements suggest that both
open-source and proprietary approaches will continue to
evolve toward more autonomous and capable systems.

Innovative Research Publication

110



International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

B. Global Al Development Patterns

The global landscape of Al development shows increasing
diversification, with significant contributions from
multiple regions. Chinese Al development, particularly in
open-source models, has become increasingly influential.
[55] analyze "China’s drive toward self-reliance in
artificial intelligence,” while [57] note that "Chinese
absolutely dominates open-source Al models,” though
recent US entries are changing this dynamic.

This global diversification creates both opportunities and
challenges for healthcare Al. On one hand, it accelerates
innovation and provides more options for healthcare
organizations. On the other hand, it introduces
complexities related to international regulations, data
sovereignty, and geopolitical considerations that must be
carefully managed.

C. Market Evolution and Investment Trends

The healthcare Al market continues to experience rapid
growth and evolution. [54] report that "Al healthcare
startups raised 2.2 billion in January 2025" alone,
reflecting sustained investor confidence in this sector. This
investment supports both open-source and proprietary
development, though funding patterns differ significantly
between these approaches.

Proprietary solutions typically attract venture capital and
corporate investment focused on commercial applications,
while open-source development often relies on academic
funding,  foundation  support, and  community
contributions.  This  differential  funding  affects
development  priorities, with  proprietary = models
emphasizing market-ready features and open-source
projects often focusing on research innovation and
accessibility.

D. Near-Term Developments (2025-2026)

The immediate future of healthcare Al will be

characterized by rapid maturation of open-source models

and increased regulatory clarity. Based on current trends
and projections from referenced literature, several key
developments are anticipated:

e Open-Source Performance Parity: By late 2025, open-
source models are projected to achieve performance
parity with proprietary systems in 85% of diagnostic
applications [20]. This will be driven by community-
driven improvements and increased investment in
open-source medical Al development.

e Regulatory Frameworks: Major regulatory bodies
including the FDA and EMA will establish formal
guidelines for open-source Al validation in healthcare
by Q2 2026 [28]. These frameworks will address
validation requirements, ongoing monitoring, and
update protocols for continuously learning systems.

o Agentic Al Adoption: Agentic Al systems will see
initial clinical deployment in 2026, particularly for
administrative tasks and preliminary diagnostic
screening [46]. Early adopters will report 30-40%
reductions in administrative workload and 25%
improvement in diagnostic throughput.

e Market Consolidation: The healthcare Al market will
experience significant consolidation, with the number
of major players reducing from the current 200+ to
approximately 50 by the end of 2026 [44]. This

consolidation ~ will be driven by regulatory
requirements and the need for substantial validation
resources.

E. Mid-Term Evolution (2027-2028)

The mid-term period will see mainstream adoption and

integration of Al into clinical workflows:

e Hybrid Model Dominance: By 2027, 60-70% of
healthcare organizations will adopt hybrid approaches
combining open-source core technologies with
proprietary specialized modules [42]. This approach
will balance cost-effectiveness with specialized
capabilities.

o Interoperability Standards: Comprehensive
interoperability standards for healthcare Al systems
will be established by 2028, enabling seamless data
exchange and model integration across platforms [58].
These standards will reduce implementation costs by
40% and accelerate deployment timelines.

e Global AI Infrastructure: China’s investment in Al
self-reliance will yield significant results by 2028, with
Chinese open-source models capturing 30-35% of the
global healthcare Al market [55]. This will create a
more diversified global Al ecosystem.

e Specialized Al Agents: Disease-specific Al agents will
emerge, with targeted solutions for oncology,
cardiology, and neurology achieving FDA approval by
2028 [51]. These specialized systems will demonstrate
45-50% improvement in early detection rates for
specific conditions.

F. Long-Term Transformation (2029-2030)

The longer-term outlook points toward fundamental
transformation of healthcare delivery through Al
integration:

e Al-First Clinical Workflows: By 2030, 70-80% of
healthcare organizations will have implemented Al-
first clinical workflows, where Al systems serve as
primary diagnostic assistants with human oversight
[52]. This shift will reduce diagnostic errors by 50-
60% and improve treatment consistency.

e Personalized Medicine at Scale: Al-enabled
personalized treatment plans will become standard
practice by 2029, leveraging patient-specific data to
optimize therapeutic outcomes [43]. This approach will
improve treatment efficacy by 35-40% across major
disease categories.

e Democratization of Healthcare Al: Open-source
platforms will enable widespread access to advanced
Al capabilities, particularly in resource-constrained
settings. By 2030, developing regions will achieve
70% of the Al healthcare capability of developed
markets at 20% of the cost.

e Regulatory Maturity: Comprehensive international
regulatory frameworks for healthcare Al will be
established by 2030, enabling global deployment while
maintaining safety standards [56]. These frameworks
will support continuous learning systems while
ensuring patient safety.

G. Technology-Specific Projections

1) Open-Source Advancements
The open-source ecosystem will experience accelerated
development:

Innovative Research Publication

111



International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

e 2026: Community-developed medical Al models will
achieve performance exceeding proprietary systems in
specialized domains including medical imaging
analysis and genomic interpretation [18].

e 2027: Open-source platforms  will  develop
comprehensive toolchains for medical Al validation,
reducing compliance costs by 50-60% and accelerating
deployment timelines [28].

e 2028: Federated learning approaches will become
standard for open-source medical Al, enabling
continuous improvement while maintaining data
privacy [21].

2) Proprietary Innovation

Proprietary  systems will focus on

advancements:

e 2026: Integrated Al platforms from major vendors
(Google, Siemens, etc.) will offer comprehensive
clinical workflow solutions covering diagnosis,
treatment planning, and outcome monitoring [59].

e 2028: Proprietary systems will dominate high-
complexity clinical applications requiring extensive
validation and regulatory compliance, maintaining
70% market share in these segments [16].

e 2030: Annual licensing costs for proprietary systems
will decrease by 40-50% due to competition from
open-source alternatives, making advanced capabilities
more accessible [42].

specialized

H. Market and Adoption Projections

Quantitative market projections based on current trends:

e 2026: Global healthcare Al market reaches $85-95
billion, with open-source solutions capturing 35%
market share [1].

e 2028: Al-assisted diagnoses will account for 60% of all
medical imaging interpretations in developed markets
[17].

e 2030: Healthcare Al will generate $350-400 billion in
annual healthcare cost savings globally through
improved efficiency and outcomes [43].

l. Critical Challenges and Considerations

Despite the promising timeline, several challenges will

require ongoing attention:

e Data Privacy and Security: Evolving regulations will
require continuous adaptation of both open-source and
proprietary systems [3].

e Workforce Transformation: Healthcare professionals
will require extensive retraining, with 40-50% of
current clinical tasks automated by 2030 [45].

o Ethical Governance: Robust ethical frameworks must
be developed to address algorithmic  bias,
accountability, and patient consent in Al-driven
healthcare [60].

This projected timeline demonstrates the transformative

potential of Al in healthcare over the next five years, with

both open-source and proprietary approaches playing
crucial roles in advancing medical capabilities and
improving patient outcomes.

J. Clinical Applications

e By 2026:
— 40-50% of U.S. hospitals will deploy AGI for
administrative tasks (prior auth, billing) [6]

—  First FDA-approved autonomous diagnostic AGI
for radiology (projected accuracy: 92%) [5]
e By 2028:
— AGI will reduce diagnostic errors by 20-30%
compared to human baselines [35]
— 30-40% of chronic disease management handled
by agentic systems [13]

K. Economic Impact
Table 18: Projected Financial Impacts (2025-2030)

Metric Value Source
Global AGI healthcare market $12.4B [12]
Administrative cost savings $8.2B/year [53]
Malpractice reduction 25% decrease [49]

L. Technological Evolution

AGI Architectures:

— Shift from single-agent to multi-agent systems
(87% of implementations by 2029) [36]

— Emergence of "hybrid AGI" combining LMMs
with robotic process automation [8]

Data Infrastructure:

—  70% of hospitals will adopt federated learning for
AGiI training by 2027 [38]

— Blockchain-secured health data exchanges for
AGI (85% adoption in EU by 2030) [30]

2025-2026:

— Mandatory AGI audit frameworks in G7 nations
[32]

—  WHO updates IHR to include AGI governance
[30]

2027-2030:

— Standardized AGI liability laws in 50+ countries
[31]

—  Global AGI certification body established [33]

M. Societal Implications

e Workforce Impact:
— 35% reduction in administrative healthcare jobs
by 2030 [12]
- 24M new "AGI supervisor" roles -created
globally [10]
e Health Equity:
— AGI could reduce rural-urban care disparities by
40% [40]
— Risk of algorithmic bias persisting in 25% of
systems without intervention [7]

N. Challenges and Future Directions

Despite its potential, AGI faces challenges:

1) Technical Limitations

AGI systems require vast datasets and computational
resources, limiting accessibility [11].

2) Ethical Dilemmas

Autonomous decision-making raises questions about
patient consent and agency [14].

3) Policy Lag

Regulatory frameworks must evolve to keep pace with
AGI advancements [34].

Recent scholarship by Joshi has established a multifaceted
strategic approach to these challenges, beginning with a
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broad framework for U.S. competitiveness that emphasizes
interoperability and policy leadership [61], [68]. This
national-level strategy extends into specialized domains,
most notably in healthcare, where systemic architectures
have been proposed for cancer care [62] and broader
government policies regarding the risk management of
both  open-source and proprietary models [70].
Furthermore, specific regulatory frameworks have been
proposed to address the safety and post-market oversight
of generative Al-enabled digital mental health devices
[69]. Beyond healthcare, it is very important to emphasizes
the critical role of workforce and educational
transformation, offering structured curriculum frameworks
for K-12 educators [64], specialized training for rare earth
element supply chain education [65], and strategic
reskilling initiatives for the U.S. military workforce [67].
These sectoral applications are supported by rigorous
advocacy for regulatory reform within federal Al adoption
[63] and recommendations for maintaining U.S. leadership
in Al exports through analysis and implementation
strategies [66].

XVI. CONCLUSION

This comprehensive review has navigated the complex
dichotomy between open-source and proprietary Al within
the healthcare sector, increasingly shaped by the
emergence of autonomous Agentic Generative Al (AGI).
Our analysis reveals that the choice between these
paradigms is not a binary one but a strategic decision
contingent on organizational needs, clinical applications,
regulatory risk tolerances, and financial constraints.

A. Key Findings

Open-source models have improved in recent time and
their performance gap with proprietary systems has
reduced. They now offer equal offering superior
advantages in transparency, customization, data privacy,
and cost-effectiveness. These qualities make them suitable
for auditability and local control as needed in the US
model of governance. Proprietary systems though maintain
their edge in reliability, integrated support, regulatory
compliance, and seamless integration with established
healthcare infrastructure because most of big private
companies are driving risk deployments in USA [11],
[35], [49].

AGI though might bring autonomy but as of today also
brings challenges including algorithmic bias, fragmented
regulatory oversight, high financial barriers, and
unresolved ethical dilemmas around accountability [29],
[38].

B. Regulatory and Governance Considerations

To ensure safe and effective adoption of AGI for US
model and national competitiveness, we propose the
following governance strategies:

o Tiered Risk-Management Framework: Implement
certification protocols aligned with international
standards (e.g., WHO’s 95% explainability threshold
[8]) that classify systems by clinical risk, mandating
appropriate human oversight levels.

e Public-Private Collaboration: Need is for pilot
programs and sandbox environments, such as
California’s 78% successful AGI pilots [48], to study

and evaluate multi-agent systems.

e Continuous Monitoring and Auditing: In the
regulations government should mandate real-time bias
audits and federated learning wherever available [38]
to promote collaborative improvement across US
institutions.

C. Affordability and Economic Feasibility

¢ Implementation Costs: High costs (e.g., $2M barriers
[11]) require careful planning for deployment in
resource-constrained environments where companies
are always chasing bottom line each quarter.

e Return on Investment: Current research report open-
source deployments ROl (e.g., 3.2:1 in rural
healthcare settings [53]), but this depends on data
quality improvements addressing 60% failure rates
[24].

D. Strategic Recommendations

e Tiered Certification: Align risk management and
explainability thresholds similar to WHO standards
[8], allowing regional flexibility based on healthcare
system maturity.

e Public-Private Sandboxes: Expand pilot programs for
multi-agent testing [48], enabling real-world evaluation
with controlled oversight.

e Continuous Bias and Safety Monitoring: Use and
promote development of real-time auditing sustems
for Medicare Advantage appeals data [7].

E. Final Words

By implementing and having an agile adaptive
governance, careful monitoring, and enterprise friendly
strategic financial planning, healthcare organizations can
leverage Agentic Gen Al and AGI to improve overall
health metric outcomes, enhance efficiency, and expand
access, while safeguarding safety, equity, and ethical
integrity [7], [11], [14], [24], [29], [30], [35], [38], [48].
[49], [50], [53].

DECLARATION

The views are of the author and do not represent any
affiliated institutions. Work is done as a part of
independent research. This is a pure review paper and all
results, proposals and findings are from the cited literature.
Author does not claim any novel findings.

REFERENCES

[1] “AI for Better Healthcare Customer Service,” clearsky2100.
Accessed: Aug. 14, 2025. Available from:
https://clearsky2100.com/how-ai-is-transforming-customer-
service-in-healthcare/

[2] “Google for Health — Advancing Cutting-edge Al
Capabilities,” Google Health. Accessed: Sep. 09, 2025.
Available from: https://health.google/ai-models

[3] Temsah et al., “DeepSeek in Healthcare: Revealing
Opportunities and Steering Challenges of a New Open-
Source Atrtificial Intelligence Frontier,” Cureus, vol. 17, no.
2, Feb. 2025. Available from:
https://doi.org/10.7759/cureus.79221

[4] “MedGemma: Our most capable open models for health Al
development,” Google Research Blog. Accessed: Sep. 09,
2025. Available from: https://tinyurl.com/2h3ke8fc

Innovative Research Publication

113


https://clearsky2100.com/how-ai-is-transforming-customer-service-in-healthcare/
https://clearsky2100.com/how-ai-is-transforming-customer-service-in-healthcare/
https://health.google/ai-models
https://doi.org/10.7759/cureus.79221
https://tinyurl.com/2h3ke8fc

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

[5] Japesh, “Revolutionizing Healthcare: A Large Agentic
Model Case Study on Predicting Patient Outcomes with
Unprecedented Accuracy,” SuperAGI, Jun. 2025. Accessed:
Aug. 14, 2025. Available from: https://tinyurl.com/54wdd85c

[6] “Revolutionizing Claims Operations with Al and Agentic
Workflows,” HMP Global Learning Network, May 2025.
Accessed: Aug. 14, 2025. Available  from:
https://tinyurl.com/2zh252d8

[7]1 R. H. Bob, “Denied by Al: How Medicare Advantage plans
use algorithms to cut off care for seniors in need,” STAT,
Mar. 2023. Accessed: Aug. 14, 2025. Available from:
https://tinyurl.com/4b2r6zcv

[8] Ethics and Governance of Artificial Intelligence for Health:
Large Multi-Modal Models, 1st ed. Geneva, Switzerland:
World Health Organization, 2024. Available from:
https://tinyurl.com/mkru2wk3

[9] Bonta, “Joint Informational Hearing,” California State
Assembly. Accessed: Aug. 14, 2025. Awvailable from:
https://tinyurl.com/9u8uyjzv

[10] “Opportunities for Gen Al in Public Health,” McKinsey
& Company. Accessed: Aug. 14, 2025. Awvailable from:
https://tinyurl.com/4xzkaftw

[11] “Agentic Al in Healthcare: Use Cases, Cost &
Challenges,” Appinventiv, May 2025. Accessed: Aug. 14,
2025. Available from: https://appinventiv.com/blog/agentic-
ai-in-healthcare/

[12] “Artificial Intelligence and Its Potential Effects on the
Economy and the Federal Budget,” Congressional Budget
Office, Sep. 2024. Accessed: Aug. 14, 2025. Available from:
https://www.cho.gov/publication/61147

[13] “Agentic Al in Healthcare,” Emorphis Health, Apr. 2025.
Accessed: Aug. 14, 2025. Available  from:
https://emorphis.health/blogs/agentic-ai-in-healthcare/

[14] P. M. J. Lamb, “Op-ed: How agentic Al is shaping health
care’s future,” Crain’s New York Business, Aug. 2025.
Accessed: Aug. 14, 2025. Available  from:
https://tinyurl.com/2s3rj2ay

[15] “Google for Health — Advancing Cutting-edge Al
Capabilities,” Google Health. Accessed: Sep. 10, 2025.
Available from: https://health.google/ai-models

[16] “Securing AIL: The Power of Proprietary Models in Protecting
Health Data,” Banjo Health. Accessed: Sep. 10, 2025.
Available from: https://tinyurl.com/p35jdm4z

[17] “Open-source Al tool competes with leading proprietary
models in medical diagnosis,” News-Medical, Mar. 2025.
Accessed: Sep. 09, 2025. Available from:
https://tinyurl.com/4d5txrrn

[18] “Open-Source Al Matches Top Proprietary LLM in Solving
Tough Medical Cases,” Harvard Medical School, Mar. 2025.
Accessed: Sep. 10, 2025. Available from:
https://tinyurl.com/28urjbf7

[19] L. Riedemann, M. Labonne, and S. Gilbert, “The path
forward for large language models in medicine is open,” npj
Digital Medicine, vol. 7, no. 1, p. 339, Nov. 2024. Available
from: https://doi.org/10.1038/s41746-024-01344-w

[20] T. A. Buckley et al., “Comparison of Frontier Open-Source
and Proprietary Large Language Models for Complex
Diagnoses,” JAMA Health Forum, vol. 6, no. 3, Mar. 2025.
https://doi.org/10.1001/jamahealthforum.2025.0040

[21] “Open-source Al tool matches commercial systems in
medical scan reporting,” News-Medical, Jul. 2025. Accessed:
Sep. 10, 2025. Available from: https://tinyurl.com/4fsthmyr

[22] Witherspoon, “How Agentic Al is transforming healthcare
delivery,” Al Accelerator Institute, Aug. 2025. Accessed:
Aug. 14, 2025. Available from: https:/tinyurl.com/c8jay5fd

[23] “Agentic Al in Healthcare Use Cases, Benefits Strategies,”
Ideas2IT. Accessed: Aug. 14, 2025. Available from:
https://www.ideas2it.com/blogs/agentic-ai-in-healthcare

[24] Japesh, “Common Agentic Al Implementation Mistakes in
Healthcare,” SuperAGI, Jun. 2025. Accessed: Aug. 14, 2025.
Awvailable from: https://tinyurl.com/4tk5kf4f

[25] “Open-Source Al Rivals Leading Proprietary Models in
Tackling Complex Medical Cases,” BIOENGINEER.ORG,
Mar. 2025. Accessed: Sep. 10, 2025. Available from:
https://tinyurl.com/mdjeckdx

[26] K. Wheeler, “Inside Google’s MedGemma Models for
Healthcare AL” Al Magazine, Jul. 2025. Accessed: Sep. 10,
2025. Available from: https://tinyurl.com/3k2759vp

[27] “Empowering Public Healthcare with  Open-Source
Language Models,” Apolitical. Accessed: Sep. 10, 2025.
Auvailable from: https://tinyurl.com/5n7tvauc

[28] S. Weber, “Open-Source Software in Healthcare: Promise
and Precautions for HI Professionals,” Journal of AHIMA.
Accessed: Sep. 10, 2025. Available from:
https://tinyurl.com/ybhw2hc2

[29] “The evolving ethics and governance landscape of agentic
AL” IBM, Mar. 2025. Accessed: Aug. 14, 2025. Available
from: https://www.ibm.com/think/insights/ethics-
governance-agentic-ai

[30] R. Bouderhem, “Shaping the future of AI in healthcare
through ethics and governance,” Humanities and Social
Sciences Communications, vol. 11, no. 1, p. 416, Mar. 2024.
Awvailable from: https://doi.org/10.1057/s41599-024-02894-w

[31] “Al in Healthcare Law Center,” McDermott. Accessed: Aug.

14, 2025. Available from:
https://www.mwe.com/resource/healthcare-ai-resource-
center/

[32] “A pro-innovation approach to Al regulation: Government
response,” GOV.UK. Accessed: Aug. 14, 2025. Available
from: https://tinyurl.com/4cw4mn6x

[33] Ethics and Governance of Artificial Intelligence for Health,
1st ed. Geneva, Switzerland: World Health Organization,
2021.

[34] “RFIL: Agentic Artificial Intelligence Systems,” ARPA-H,
Oct. 2024. Accessed: Aug. 14, 2025. Available from:
https://arpa-h.gov/news-and-events/rfi-agentic-artificial-
intelligence-systems

[35] “Agentic Al in Healthcare: Transforming Patient Care with
Intelligence,” Gleecus TechLabs Inc., Jan. 2025. Accessed:
Aug. 14, 2025. Available from:
https://www.gleecus.com/blogs/agentic-ai-in-healthcare/

[36] “Seizing healthcare’s agentic Al opportunity,” Cognizant.
Accessed: Aug. 14, 2025. Available from:
https://tinyurl.com/mr33wxh3

[37] “Generative Al Healthcare: 15 Use Cases with Examples,”
AlMultiple, 2025. Accessed: Aug. 14, 2025. Available from:
https://research.aimultiple.com/generative-ai-healthcare/

[38] “Priorities for an Al in health care strategy,” The Health
Foundation. Accessed: Aug. 14, 2025. Available from:
https://tinyurl.com/4hwm55uz

[39] M. F., “Battle of the AI Titans: GPT-5 vs Grok-4 vs
Microsoft Copilot,” TS2 Space, Aug. 2025. Accessed: Aug.
14, 2025. Available from: https://tinyurl.com/wew6rjb3

[40] “Agentic Al in Healthcare Management: Uses and Benefits,”
CipherNutz. Accessed: Aug. 14, 2025. Available from:
https://ciphernutz.com/blog/ai-agents-in-healthcare

[41] “Healthcare Agentic Al: Benefits & Use Cases,” Salesforce.
Accessed: Aug. 14, 2025. Available from:
https://tinyurl.com/4z7t8txr

[42] “Open source vs. Proprietary Al tools: Making strategic
choices for long-term success,” SSRN, Apr. 2025. Accessed:
Sep. 10, 2025. Available from:
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=546944
6

[43] Masood, “Unlocking Strategic Elasticity: A Healthcare
Executive’s Guide to High-Efficiency Lean Al” MedCity
News, Apr. 2025. Accessed: Sep. 10, 2025. Available from:
https://tinyurl.com/28sv8bxv

[44] S. Duranton, “What Leaders Need to Know About Open-
Source vs. Proprietary Models,” Forbes, Jul. 2025. Accessed:
Sep. 10, 2025. Available from: https://tinyurl.com/4tf2534d

Innovative Research Publication

114


https://tinyurl.com/54wdd85c
https://tinyurl.com/2zh252d8
https://tinyurl.com/4b2r6zcv
https://tinyurl.com/mkru2wk3
https://tinyurl.com/9u8uyjzv
https://tinyurl.com/4xzkaftw
https://appinventiv.com/blog/agentic-ai-in-healthcare/
https://appinventiv.com/blog/agentic-ai-in-healthcare/
https://www.cbo.gov/publication/61147
https://emorphis.health/blogs/agentic-ai-in-healthcare/
https://tinyurl.com/2s3rj2ay
https://health.google/ai-models
https://tinyurl.com/p35jdm4z
https://tinyurl.com/4d5txrrn
https://tinyurl.com/28urjbf7
https://doi.org/10.1038/s41746-024-01344-w
https://doi.org/10.1001/jamahealthforum.2025.0040
https://tinyurl.com/4fsthmyr
https://tinyurl.com/c8jay5fd
https://www.ideas2it.com/blogs/agentic-ai-in-healthcare
https://tinyurl.com/4tk5kf4f
https://tinyurl.com/mdjeckdx
https://tinyurl.com/3k2759vp
https://tinyurl.com/5n7tvauc
https://tinyurl.com/ybhw2hc2
https://www.ibm.com/think/insights/ethics-governance-agentic-ai
https://www.ibm.com/think/insights/ethics-governance-agentic-ai
https://doi.org/10.1057/s41599-024-02894-w
https://www.mwe.com/resource/healthcare-ai-resource-center/
https://www.mwe.com/resource/healthcare-ai-resource-center/
https://tinyurl.com/4cw4mn6x
https://arpa-h.gov/news-and-events/rfi-agentic-artificial-intelligence-systems
https://arpa-h.gov/news-and-events/rfi-agentic-artificial-intelligence-systems
https://www.gleecus.com/blogs/agentic-ai-in-healthcare/
https://tinyurl.com/mr33wxh3
https://research.aimultiple.com/generative-ai-healthcare/
https://tinyurl.com/4hwm55uz
https://tinyurl.com/wew6rjb3
https://ciphernutz.com/blog/ai-agents-in-healthcare
https://tinyurl.com/4z7t8txr
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5469446
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5469446
https://tinyurl.com/28sv8bxv
https://tinyurl.com/4tf2534d

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

7]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

“How Al is Transforming Healthcare Delivery and
Workforce Management.” Accessed: Sep. 10, 2025.

L. T. E. L., “What Is Agentic Al and How Can It Be Used in
Healthcare?” HealthTech Magazine, May 2025. Accessed:
Sep. 10, 2025. Available from: https:/tinyurl.com/zy8anja2
“How agentic Al systems can solve problems in healthcare
today,” GE Healthcare. Accessed: Sep. 10, 2025. Available
from: https://tinyurl.com/bt6kbpr8

J. Regan, “State of California Benefits and Risks of
Generative Artificial Intelligence Report,” 2023. Accessed:
Aug. 14, 2025. Available from: https://tinyurl.com/53dr93e7
“Agentic Al and the Architecture of Healthcare
Transformation,” Professional Liability Insurance Group,
Apr. 2025. Accessed: Aug. 14, 2025. Available from:
https://protectusbetter.com/agentic-ai-and-the-architecture-
of-healthcare-transformation/

“Agentic Al, Generative Al and AI Governance,” SAS.
Accessed: Aug. 14, 2025. Available  from:
https://www.sas.com/en_us/webinars/agentic-ai-generative-
ai-governance.html

“Medical Al Agents Boost Accuracy for Complex Health
Queries,” Quantum Zeitgeist, Aug. 2025. Accessed: Sep. 10,
2025. Available from: https:/tinyurl.com/mrxwv74u

“The Rise of Agentic Al in Healthcare,” athenahealth.
Accessed: Sep. 10, 2025. Available from:
https://www.athenahealth.com/resources/blog/how-agentic-
ai-helps-care-teams

K. Coleman, “Lowering Health Care Costs Through Al: The
Possibilities and Barriers,” Paragon Health Institute, Jul.
2024. Accessed: Aug. 14, 2025. Available from:
https://tinyurl.com/y64mam9d

“Al Healthcare Startups Raised $2.2 Billion in January
2025,” Al in Lab Coat, Jan. 2025. Accessed: Sep. 10, 2025.
Available from: https://tinyurl.com/27n2vae9

W. Chang, R. Arcesati, and A. Hmaidi, “China’s Drive
Toward Self-Reliance in Artificial Intelligence.”

M. S. Chase and W. Marcellino, “Incentives for U.S.—China
Conflict, Competition, and Cooperation Across Artificial
General Intelligence’s Five Hard National Security
Problems,” RAND Corporation, Aug. 2025. Accessed: Sep.
10, 2025. Available from:
https://www.rand.org/pubs/perspectives/PEA4189-1.html

P. Baier, “OpenAl Releases Two Powerful Open-Source Al
Models,” GAI Insights, Aug. 2025. Accessed: Sep. 10, 2025.
Available from: https:/gaiinsights.substack.com/p/openai-
releases-two-powerful-open

“The influence of open source and Al in healthcare,” Red
Hat. Accessed: Sep. 10, 2025. Available from:
https://www.redhat.com/en/blog/influence-open-source-and-
ai-healthcare

K. Dany, “Siemens Healthineers Al Strategy Analysis,”
Klover Al, Aug. 2025. Accessed: Sep. 10, 2025. Available
from: https://tinyurl.com/49zmkrch

M. F., “The State of Artificial Intelligence,” TS2 Space, Jul.
2025. Accessed: Sep. 09, 2025. Available from:
https://tinyurl.com/yafw28ah

S. Joshi, “Advancing U.S. Competitiveness in Agentic
Generative AL” International Journal of Innovative Science
and Research Technology, pp. 1480-1496, Sep. 2025.
Available from: https://doi.org/10.38124/ijisrt/25sep978

S. Joshi, “National Framework for Agentic Generative Al in
Cancer Care,” Jan. 2026. Available from:
https://www.preprints.org/manuscript/202509.1100/v1

S. Joshi, “Regulatory Reform for Agentic AL Zenodo, Dec.
2025. Available from:
https://doi.org/10.5281/zenodo.17808694

S. Joshi, “Enhancing U.S. K-12 Competitiveness for the
Agentic Generative Al Era,” Oct. 2025. Available from:
https://eric.ed.gov/?id=ED676035

[65]

[66]

[67]

[68]

[69]

[70]

S. Joshi, “An Agentic AI-Enhanced Curriculum Framework
for Rare Earth Elements,” Oct. 2025. Available from:
https://eric.ed.gov/?id=ED676389

S. Joshi, “A Comprehensive Framework for U.S. Al Export
Leadership,” Zenodo, Dec. 2025. Awvailable from:
https://doi.org/10.5281/zenodo.17823269

S. Joshi, “Reskilling the U.S. Military Workforce for the
Agentic Al  Era,” Nov. 2025. Available from:
https://eric.ed.gov/?id=ED677111

S. Joshi, “Securing U.S. Al Leadership: A Policy Guide for
Regulation, Standards and Interoperability Frameworks,”
International Journal of Scientific Research Archive, vol. 16,
no. 3, pp. 001-026, Sep. 2025. Awvailable from:
https://doi.org/10.30574/ijsra.2025.16.3.2519

S. Joshi, “Regulatory Frameworks for Generative Al Enabled
Digital Mental Health Devices,” ec. 2025. Available from:
https://vixra.org/abs/2512.0033

S. Joshi, “Framework for Government Policy on Agentic and
Generative Al in Healthcare: Governance, Regulation, and
Risk Management of Open-Source and Proprietary Models”,
Preprint (not peer-reviewed), 2025 Available from:
https://doi.org/10.20944/preprints202509.1087.v1

ABOUT THE AUTHOR

Satyadhar Joshi did his International-
MBA from Bar llan University Israel, and
MS in IT from Touro College NYC and is
currently working as AVP at BoFA USA.
He is an independent researcher in the
domain of Al, Gen Al and Analytics.

Innovative Research Publication

115


https://tinyurl.com/zy8anja2
https://tinyurl.com/bt6kbpr8
https://tinyurl.com/53dr93e7
https://protectusbetter.com/agentic-ai-and-the-architecture-of-healthcare-transformation/
https://protectusbetter.com/agentic-ai-and-the-architecture-of-healthcare-transformation/
https://www.sas.com/en_us/webinars/agentic-ai-generative-ai-governance.html
https://www.sas.com/en_us/webinars/agentic-ai-generative-ai-governance.html
https://tinyurl.com/mrxwv74u
https://www.athenahealth.com/resources/blog/how-agentic-ai-helps-care-teams
https://www.athenahealth.com/resources/blog/how-agentic-ai-helps-care-teams
https://tinyurl.com/y64mam9d
https://tinyurl.com/27n2vae9
https://www.rand.org/pubs/perspectives/PEA4189-1.html
https://gaiinsights.substack.com/p/openai-releases-two-powerful-open
https://gaiinsights.substack.com/p/openai-releases-two-powerful-open
https://www.redhat.com/en/blog/influence-open-source-and-ai-healthcare
https://www.redhat.com/en/blog/influence-open-source-and-ai-healthcare
https://tinyurl.com/49zmkrch
https://tinyurl.com/yafw28ah
https://doi.org/10.38124/ijisrt/25sep978
https://www.preprints.org/manuscript/202509.1100/v1
https://doi.org/10.5281/zenodo.17808694
https://eric.ed.gov/?id=ED676035
https://eric.ed.gov/?id=ED676389
https://doi.org/10.5281/zenodo.17823269
https://eric.ed.gov/?id=ED677111
https://doi.org/10.30574/ijsra.2025.16.3.2519
https://vixra.org/abs/2512.0033
https://doi.org/10.20944/preprints202509.1087.v1

	I.    INTRODUCTION
	II.  LITERATURE REVIEW
	A. Proprietary AI Models in Healthcare
	B. Open-Source AI Advancements
	C. Performance Comparisons
	D. Literature Identification and Selection
	E. Comparative Analysis Framework
	F. AGI
	G. Comparative Analysis

	III. QUANTITATIVE FOUNDATIONS AND MATHEMATICAL FRAMEWORKS
	A. Top 10 Key Terms, Theories, and Models in Agentic AI for Healthcare
	B. Performance Evaluation Metrics
	C. Economic Modeling and Cost-Benefit Analysis
	D. Market Growth Projections and Forecasting
	E. Performance Improvement Metrics
	F. Statistical Validation Frameworks
	G. Agentic AI Performance Metrics
	H. Quality-adjusted Life Year (QALY) Calculations
	I. Reliability and Safety Metrics

	IV. VISUAL FRAMEWORK: ARCHITECTURE, TIMELINE, AND STRATEGIC ANALYSIS
	A. Architectural Framework for Hybrid AI Deployment
	B. Future Development Timeline (2025-2030)
	C. Performance Comparison Radar Chart
	D. Technology Adoption Curve
	E. Strategic Decision Framework

	V. OVERVIEW OF FIGURES AND VISUAL FRAMEWORKS
	A. Visual Framework Components
	B. Temporal Analysis Visualizations
	C. Architectural Integration Framework
	D. Strategic Applications
	E. Research and Policy Implications

	VI. OVERVIEW OF FIGURES AND VISUAL FRAMEWORKS
	A. Architectural Framework for Hybrid AI Deployment

	VII.   LITERATURE TAXONOMY BY YEAR, SOURCE TYPE, AND GEOGRAPHY
	A. Chronological Distribution (2021–2025)
	B. Publication Venues Referenced in this work
	C. Predictive Analytics
	D. Administrative Efficiency
	E. Personalized Medicine

	VIII. ARTIFICIAL GENERAL INTELLIGENCE (AGI) IN HEALTHCARE
	A. Defining AGI in Medical Contexts
	B. Current AGI Implementations
	C. Technical Foundations
	D. Future Development Trajectories

	IX. AGENTIC AI SYSTEMS IN HEALTHCARE
	A. Definition and Core Characteristics
	B. Agent Typologies in Healthcare
	C. Architectural Models
	D. Operational Mechanisms
	E. Emerging Agent Capabilities
	F. Definition and Capabilities of Agentic AI
	G. Current Implementations and Applications
	H. Technical Architecture and Framework
	I. Performance Metrics and Clinical Impact
	J. Implementation Challenges and Considerations
	K. Future Development Trajectory

	X. RISK MANAGEMENT IN AGI HEALTHCARE
	A. Ethical Risks
	B. Regulatory Gaps
	C. Implementation Challenges
	D. Risk Taxonomy
	E. Regulatory Frameworks
	A. Existing Models
	B. Emerging Needs
	C. Positive Outcomes
	D. Negative Consequences
	E. Governance Recommendations
	F. International Cooperation
	G. Pro-Innovation Policies
	H. Transparency and Accountability

	XI. QUANTITATIVE ANALYSIS AND MARKET TRENDS
	A. Market Size and Growth Projections
	B. Investment and Funding Patterns
	C. Performance Metrics and Comparative Analysis
	D. Adoption Rates and Implementation Costs
	E. Efficiency Gains and Operational Impact
	F. Global Distribution and Regional Adoption
	G. Return on Investment Analysis
	H. Quantitative Analysis of Agentic AI in Healthcare

	XII.   US VS. CHINA HEALTHCARE AI DEVELOPMENT: A COMPARATIVE ANALYSIS
	A. National Strategies and Policy Frameworks
	B. Investment Patterns and Market Development
	C. Open-Source Ecosystem Development
	D. Technical Capabilities and Innovation Focus
	E. Data Governance and Privacy Frameworks
	F. Global Market Presence and Influence
	G. Research Output and Academic Contribution
	H. Regulatory Approaches and Approval Processes
	I. Military-Civil Fusion and Dual-Use Technologies
	J. Future Trajectories and Strategic Implications

	XIII. POLICY PROPOSALS AND GOVERNMENT RECOMMENDATIONS
	A. Regulatory Framework Enhancements
	B. Financial Incentives
	C. Implementation Roadmap
	D. Public-Private Partnerships
	E. Monitoring & Evaluation

	XIV. SUMMARY OF TABLES
	A. Key Patterns
	B. Usage Guidance
	C. Policy Recommendations

	XV.   FUTURE TIMELINE AND PROJECTIONS (2025–2030)
	A. Agentic AI in Healthcare
	B. Global AI Development Patterns
	C. Market Evolution and Investment Trends
	D. Near-Term Developments (2025–2026)
	E. Mid-Term Evolution (2027–2028)
	F. Long-Term Transformation (2029–2030)
	G. Technology-Specific Projections
	H. Market and Adoption Projections
	I. Critical Challenges and Considerations
	J. Clinical Applications
	K. Economic Impact
	L. Technological Evolution
	M. Societal Implications
	N. Challenges and Future Directions

	XVI. CONCLUSION
	A. Key Findings
	B. Regulatory and Governance Considerations
	C. Affordability and Economic Feasibility
	D. Strategic Recommendations
	E. Final Words


