
                                                                                
                                  International Journal of Innovative Research in Computer Science & Technology (IJIRCST) 
                                                                                                         ISSN: 2347-5552, Volume-2, Issue-3, May-2014   

85 

 

 
Abstract—Clustering problems are well known in database 

literature for their use in numerous applications. 
Multidimensional data always is a challenge for clustering 
algorithms. The Halite, fast and scalable clustering method 
that looks for clusters in subspaces of multidimensional data. 
The tree root corresponds to a hypercube embodying the full 
data set. The next level divides the space in a set of 2D 
hypercube. The resulting hypercube are divided again, 
generating the tree structure. Bump Hunting task refers to 
apply for each level of the Counting-tree one d-dimensional 
Laplacian mask over the respective grid to spot bumps in the 
respective    resolution. Specifically the main contributions of 
Halite are: Scalability: it is linear in time and space 
regarding the data size and dimensionality of the clusters’ 
subspaces. Usability: it is deterministic, robust to noise, 
doesn’t take the number of clusters as an input parameter, 
and detects clusters in subspaces generated by original axes 
or by their linear combinations, including space rotation. 
Effectiveness: it is accurate, providing results with equal or 
better quality. It is achieved through word based approach 
Generality: it includes a soft clustering approach.  
 

Index Terms— Bump Hunting, Correlation Connected 
Objects,   Harp ,  Spotting clusters .  
 

I. INTRODUCTION 
   The new Halite method for linear clustering, a fast and 
scalable algorithm that spots clusters in subspaces of 
multidimensional data using a top down strategy. It 
analyzes the point distribution in the “full dimensional”[3] 
space by performing a multiresolution, recursive partition 
of that space, which helps finding clusters covering regions 
with varying sizes, shapes, density, correlated axes, and 
number of points. Existing methods are typically 
superliner[2] in space or time. It improves the basic Halite0 
by providing an optimized implementation strategy for the 
Counting-tree, even for the case when it does not fit in main 
memory. The Halite0 algorithm has linear space 
complexity the number of points, axes and clusters. Thus, 
for large data sets, the use of Operational System’s disk  
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cache may become a considerable bottleneck. In order to 
overcome this problem, Halite has a table-based 
implementation that never uses disk cache, regardless of 
the input data set. Therefore, it allows us to efficiently 
analyze large amounts of data.  The idea is to represent the 
Counting-tree by tables stored in main memory. Each table 
represents one tree level, by storing in key/value entries the 
data related to all nonempty cells of that level. Remember 
that Halite0 uses  cells with the structure where  loc is the 
cell spatial position inside its parent cell, n is the  number of 
points in the cell, p[ ] is an array of half-space  counts, used 
Cell is a Boolean flag, and ptr is a pointer to  the next tree 
level.        

II. LITERATURE SURVEY 

A. Finding Non-Redundant Statistically Significant 
Regions in High Dimensional Data: a Novel Approach 
to Projected and Subspace Clustering  

 Projected and subspace clustering algorithms search for 
clusters of points in subsets of attributes. Projected 
clustering computes several disjoint clusters, plus outliers, 
so that each cluster exists in its own subset of attributes. 
Subspace clustering enumerates clusters of points in all 
subsets of attributes, typically producing many overlapping 
clusters [5][6]. One problem of existing approaches is that 
their objectives are stated in a way that is not independent of 
the particular algorithm proposed to detect such clusters. A 
second problem is the definition of cluster density based on 
user-defined parameters, which makes it hard to or whether 
they actually stand out in the data in a statistical sense. We 
propose a novel problem formulation that aims at extracting 
axis-parallel regions that stand out in the data in a 
statistical sense. The set of axis-parallel, statistically 
significant regions that exist in a given data set is typically 
highly redundant. Therefore, formulate the problem of 
representing this set through a reduced, non-redundant set 
of axis parallel, statistically significant regions as an 
optimization problem. Exhaustive search is not a viable 
solution due to computational infeasibility, and we propose 
the approximation algorithm STATPC. Our 
comprehensive experimental evaluation shows that 
STATPC significantly outperforms existing projected and 
subspace clustering algorithms in terms of accuracy. 
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B. Computing Clusters of Correlation Connected 
Objects  
The detection of correlations between different features 

in a set of feature vectors is a very important data mining 
task because correlation indicates a dependency between 
the features or some association of cause and between them. 
This association can be arbitrarily complex, i.e. one or more 
features might be dependent from a combination of several 
other features. Well-known methods like the principal 
components analysis (PCA) can perfectly and correlations 
which are global, linear, not hidden in a set of noise vectors, 
and uniform. In many applications such as medical 
diagnosis, molecular biology, credit card fraud, monitoring 
of criminal activities, time sequences, or electronic 
commerce, however, correlations are not global since the 
dependency between features can be different indifferent 
subgroups of the set. In this paper, we propose a method 
called 4C (Computing Correlation Connected Clusters) to 
identify local subgroups of the data objects sharing a 
uniform but arbitrarily complex correlation. Our algorithm 
is based on a combination of PCA and density-based 
clustering. Our method has a determinate result and is 
robust against noise.  

C.  Iterative Projected Clustering by Subspace Mining 
 Irrelevant attributes add noise to high-dimensional clusters 
and render traditional clustering techniques inappropriate. 
In this paper, we realize the analogy between mining 
frequent item sets and discovering dense projected clusters 
around random points. Based on this, we propose a 
technique that improves the efficiency of a projected 
clustering algorithm. Our method is an optimized 
adaptation of the frequent pattern tree growth method used 
for mining frequent item sets [8]. We propose several 
techniques that employ the branch and bound paradigm to 
efficiently discover the projected clusters. An experimental 
study with synthetic and real data demonstrates that our 
technique significantly improves on the accuracy and speed 
of previous techniques         CLUSTERING partitions a 
collection of objects S into a set of groups, such that the 
similarity between objects of the same group is high and 
objects from different groups are dissimilar. Clustering 
finds many applications in marketing image analysis, 
bioinformatics, document classification, indexing, etc. In 
many such applications, the objects to be clustered are 
represented by points in a high-dimensional space, where 
each dimension corresponds to an attribute/feature and the 
feature value of each object determines its coefficient in the 
corresponding dimension. A distance measure between two 
points is used to measure the dissimilarity between the 
corresponding objects. 

D. Harp: A Practical Projected Clustering Algorithm 
The main theme of this thesis is to study the feasibility of 
extracting useful information from gene expression profiles 
by a relatively new data mining approach known as 
projected clustering. This is a multi-disciplinary topic, 
involving research efforts from areas such as data mining, 
applied mathematics, genetics and genomics. This chapter 
consists of two main parts. The first part provides a short 

overview of the objectives and methods of data mining, and 
quickly moves to the topic of clustering and finally 
projected clustering.   The second part starts with an 
introduction to bioinformatics in general, and then narrows 
down to microarray technology and gene expression 
profiles, and finally focuses on some clustering methods 
proposed for gene expression profile analysis. Clustering is 
a process to group similar objects together. Before directly 
jumping into the detailed discussion of clustering, it is 
instrumental to spend some time on the format of data that 
can be clustered. In the following definitions, the preferred 
terms of some concepts appear first and some alternative 
terms that have the same or similar meanings are listed in 
brackets. A cluster is defined as a non-empty subset of the 
objects, which are called the members of the cluster. The 
centroid of a cluster is a virtual object with its projected 
value on each dimension equal to the arithmetic mean of the 
projected values of all the cluster members on the 
dimension1 Two clusters are disjoint (non-overlapping) if 
they contain no common objects, and a set of clusters is 
disjoint if all clusters in it are pair wise disjoint. A 
clustering algorithm is said to produce disjoint clusters if 
the clusters that it produces are always disjoint. Otherwise, 
the algorithm is said to produce non-disjoint clusters, even 
the clusters are not always non-disjoint. Some objects that 
do not fit into any cluster can be left UN clustered. They are 
called the outliers of the dataset, which are reported on a 
separate outlier list. 

E. Locally adaptive metrics for clustering high 
dimensional data 

Clustering suffers from the curse of dimensionality, and 
similarity functions that use all input features with equal 
relevance may not be effective. We introduce an algorithm 
that discovers clusters in subspaces spanned by different 
combinations of dimensions via local weightings of 
features. This approach avoids the risk of loss of 
information encountered in global dimensionality 
reduction techniques, and does not assume any data 
distribution model. Our method associates to each cluster a 
weight vector, whose values capture the relevance of 
features within the corresponding cluster. We 
experimentally demonstrate the gain in performance our 
method achieves with respect to competitive methods, 
using both synthetic and real datasets. In particular, our 
results show the feasibility of the proposed technique to 
perform simultaneous clustering of genes and conditions in 
gene expression data, and clustering of very 
high-dimensional data such as text data Clustering suffers 
from the curse of dimensionality problem in 
high-dimensional spaces. In high dimensional spaces, it is 
highly likely that, for any given pair of points within the 
same cluster, there exist at least a few dimensions on which 
the points are far apart from each other. Furthermore, 
several clusters may exist in different subspaces, comprised 
of different combinations of features. In many real world 
problems, in fact, some points are correlated with respect to 
a given set of dimensions, and others are correlated with 
respect to different dimensions. Each dimension could be 
relevant to at least one of the clusters. The problem of high 
dimensionality could be addressed by requiring the user to 
specify a subspace for cluster analysis. More importantly, 
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correlations that identify clusters in the data are likely not to 
be known by the user.  

F.  Locally adaptive metrics for clustering high 
dimensional data  

Clustering suffers from the curse of dimensionality, and 
similarity functions that use all input features with equal 
relevance may not be effective. We introduce an algorithm 
that discovers clusters in subspaces spanned by different 
combinations of dimensions via local weightings of 
features. This approach avoids the risk of loss of 
information encountered in global dimensionality 
reduction techniques, and does not assume any data 
distribution model. Our method associates to each cluster a 
weight vector, whose values capture the relevance of 
features within the corresponding cluster. We 
experimentally demonstrate the gain in performance our 
method achieves with respect to competitive methods, 
using both synthetic and real datasets. In particular, our 
results show the feasibility of the proposed technique to 
perform simultaneous clustering of genes and conditions in 
gene expression data, and clustering of very 
high-dimensional data such as text data Clustering suffers 
from the curse of dimensionality problem in 
high-dimensional spaces. In high dimensional spaces, it is 
highly likely that, for any given pair of points within the 
same cluster, there exist at least a few dimensions on which 
the points are far apart from each other. Furthermore, 
several clusters may exist in different subspaces, comprised 
of different combinations of features. In many real world 
problems, in fact, some points are correlated with respect to 
a given set of dimensions, and others are correlated with 
respect to different dimensions. Each dimension could be 
relevant to at least one of the clusters. The problem of high 
dimensionality could be addressed by requiring the user to 
specify a subspace for cluster analysis. More importantly, 
correlations that identify clusters in the data are likely not to 
be known by the user.  

 

III.  SYSTEM ARCHITECTURE DESIGN 
The structure of the system which comprises system 
components, the externally visible properties of those 
components, the relationships between them, and provides 
a plan from which products can be procured, and systems 
developed, that will work together to implement the overall 
system. 
As far as the data allocation strategies are concerned, our 
work is mostly relevant to watermarking that is used as a 
means of establishing original ownership of distributed 
objects. Our approach and watermarking are similar in the 
sense of providing agents with some kind of receiver 
identifying information. By its very nature, a watermark 
modifies the item being watermarked. If the object to be 
watermarked cannot be modified, then a watermark cannot 
be inserted. In such cases, methods that attach watermarks 
to the distributed data are not applicable. 

 
Fig 1:  System Design 

 
  

IV. CLASSIFICATION & RETRIEVAL 

A. Dataset Partition  
  The data set partition by ensuring that each point belongs 
to at most one cluster. The data contain a pair of clusters 
that overlap, making any data set partitions not a good 
choice, provided that the points in light-gray should belong 
to both clusters. In cases like that, the so-called soft 
clustering methods are more appropriate, since they allow 
points in the overlapping spaces to belong to more than one 
cluster. 

B. Spotting clusters     
      It generalizes the structure of these systems to the 
d-dimensional case in order to describe clusters of any 
shape and size, hence its name Halite. Halite uses spatial 
convolution masks in a novel way to efficiently detect 
density variations in a multi scale grid structure that 
represents the input data, thus spotting clusters. These 
masks are extensively used in digital image processing to 
detect patterns in images      Spot Point:  To encode an input 
data set, selecting a minimal code length.  

C. Spot points 
    The Minimum Description Length (MDL) principle is 
also used in a novel way. Its idea is to encode an input data 
set, selecting a minimal code length. Halite uses MDL to 
automatically tune a density threshold. The data 
distribution, which helps spotting the clusters’ subspaces. 
Finally, Halite includes a compression-based analysis to 
spot points that most likely belong to two or more clusters 
that overlap in the space. It allows soft clustering results.   

  
    Fig 2:  Spot points 
 

D. Bump Hunting 
The “Bump Hunting” spots cells on the “positive” side of 

the largest, local density changes, but it does not guarantee 
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that these changes are statistically significant – some of 
them could have been created by chance. Even when 
analyzing only points randomly distributed through a 
d-dimensional space, the mask will return bumps. This 
strategy allows Halite0 to identify the best resolution to spot 
each bump, as this resolution is the one in which the 
respective local density change is more intense, thus, it 
avoids overestimating the clusters bounds and spotting only 
clusters’ borders. It also spots the right moment to stop the 
“Bump hunting” it stops once, in all resolutions, the 
clearest bump was potentially created by chance. 

E.  Counting Tree  
   The Counting-tree by tables stored in main memory 
and/or disk. Each table represents one tree level, by storing 
in key/value entries the data related to all nonempty cells of 
that level. Remember that Halite0 uses  cells with the 
structure  where  loc is the cell spatial position inside its 
parent cell, n is the  number of points in the cell, P is an 
array of half-space  counts, used Cell is a Boolean flag, and 
ptr is a pointer to  the next tree level. For Halite, this cell 
structure was slightly modified. Here, the pointer ptr does 
not exist and loc has the absolute position for the cell. In a 
key/value pair, loc is the key, and the other attributes form 
the value.   
The data storage for Halite: The tables shown consist in a 
different way of storing the Counting tree of Fig. 3c. Both 
approaches represent the same data, the 2D data set from 
the one.  

 
Fig 3:  Counting Tree Construction 

 
 

V. METHODOLOGY AND IMPLEMENTATION 

A. Finding β -Clusters 
The second phase of Halite0 uses the counts in the tree to 

spot bumps in the space with all axes that indicate 
β-clusters. Halite0 looks for β-clusters by applying 

convolution masks over each level of the Counting-tree. We 
name this task “Bump Hunting.” The masks are integer 

approximations of the Laplacian filter, a second-derivative 
operator that reacts to transitions in density. Figs. 3d and 3e 

show examples of 1D and 2D Laplacian masks, 
respectively. In a nutshell, the “Bump Hunting” task refers 

to: to apply for each level of the Counting-tree one 
d-dimensional Laplacian mask over the respective grid to 
spot bumps in the respective resolution. Fig. 4a illustrates 

the process on a toy 1D data set with grids in five 
resolutions. To spot bumps, for each cell of each resolution, 
the 1D mask is applied as follows: multiply the cell’s count 

of points by the mask’s center value. Multiply the point 
count of each neighbor of the cell by the respective mask 

value, and get the convoluted value for the cell by summing 
the results of the multiplications. After visiting all cells in 
one resolution, the cell with the largest convoluted value 
represents the clearest bump in that resolution, i.e., the 

largest positive magnitude of the density gradient. In Fig. 
4a, for each resolution, one dark-gray arrow points to this 

cell. 

 
Fig 4:  Coarser Resolutions 

  
                

B. Halite Algorithm 
      The Halite method for local correlation clustering. It 
improves the basic Halite0 by providing an optimized 
implementation strategy for the Counting-tree, even for the 
case when it does not fit in main memory. The Halite0 
algorithm has linear space complexity the number of 
points, axes and clusters. However, using the recommended 
configuration, the amount of memory required by it in our 
previous experiments of varied between 25 and 50 percent 
of the data size, depending on the point’s distribution. 
Thus, for large data sets, the use of Operational System’s 
disk cache may become a considerable bottleneck. In order 
to overcome this problem, Halite has a table-based 
implementation that never uses disk cache, regardless of 
the input data set. Therefore, it allows us to efficiently 
analyze large amounts of data. For Halite, cell structure was 
slightly modified. Here, the pointer ptr does not exist and 
loc has the absolute position for the cell. In a key/value pair, 
loc is the key, and the other attributes form the value.    Fig. 
5 exemplifies the data storage for Halite. The tables shown 
consist in a different way of storing the Counting tree both 
approaches represent the same data, the 2D data set. 
 
     Illustration of our soft clustering method Halites: 
Beta-clusters may stay apart if they are incompatible, 
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resulting in soft clustering are merged together. The 
compression-based formulas of Halite’s automatically 
make the right choice.  
 

C. BETA Cluster Algorithm 
The “Bump Hunting” task allows one to efficiently spot 

the clearest bumps in a data set. However, two open 
questions still prevent its use for clustering: 1) what is the 
best resolution to spot each bump? And 2) when should the 
“Bump Hunting” stop? To give an intuition on both 
questions, we use again the 1D data with grids in five 
resolutions from Fig. 4a. A dark-gray arrow points to the 
cell with the largest convoluted value, which describes the 
clearest bump in the data for each resolution. 

Notice: a procedure to automatically identify the best 
resolution to spot a bump is still missing, which refers to 
question one. In the example, the bump is best described in 
the third coarsest resolution, as its bounds are 
overestimated in the two coarser resolutions and only its 
borders are spotted in the two finer resolutions. In the 
example, ignoring the bump’s region, a white arrow points 
to the cell with the largest convoluted value for each 
resolution, which, clearly, doesn’t lead to a cluster. Thus, 
the “Bump Hunting” should stop. 

 
Fig 5:  Storing the counting tree 

 
Notice that the “Bump Hunting” spots cells on the 
“positive” side of the largest, local density changes, but it 
does not guarantee that these changes are statistically 
significant some of them could have been created by 
chance. Even when analyzing only points randomly 
distributed through a d-dimensional space, the mask will 
return bumps. Therefore, we propose to automatically 
answer both questions previously posed by ignoring bumps 
that, potentially, were created by chance, assuming that 
only statistically significant bumps lead to clusters. This 
strategy allows Halite0 to identify the best resolution to spot 
each bump, as this resolution is the one in which the 
respective local density change is more intense, thus, it 
avoids overestimating the clusters bounds and spotting only 
clusters’ borders.  Notice that the “Bump Hunting” spots 
cells on the “positive” side of the largest, local density 
changes, but it does not guarantee that these changes are 
statistically significant some of them could have been 
created by chance. Even when analyzing only points 
randomly distributed through a d-dimensional space, the 

mask will return bumps. Therefore, we propose to 
automatically answer both questions previously posed by 
ignoring bumps that, potentially, were created by chance, 
assuming that only statistically significant bumps lead to 
clusters. This strategy allows Halite0 to identify the best 
resolution to spot each bump, as this resolution is the one in 
which the respective local density change is more intense, 
thus, it avoids overestimating the clusters bounds and 
spotting only clusters’ borders.  
 
 The evaluation of a clustering result the quality of the 
uncovered relevant axes is similar. We also computed the 
harmonic mean of the averaged precision for all found 
clusters and the averaged recall for all real clusters, but we 
exchanged the sets of points in the two last equations, 
precision and recall, by sets of axes. We name this 
harmonic mean as Subspaces Quality. In the cases where a 
technique does not find clusters in a data set, the value zero 
is assumed for both qualities. Halite uses fixed input 
parameter values, as defined in Halite0 was tuned in the 
same way.  

The other algorithms were tuned as follows: ORCLUS, 
LAC, EPCH, CFPC, and HARP received as input the 
number of clusters present in each data set. Also, the known 
percent of noise for each data set was informed to HARP. 
The extra parameters of the previous works were tuned as in 
their original authors’ instructions. LAC was tested with 
integer values from 1 to 11, for the parameter 1=h. 
However, its runtime differed considerably with distinct 
values of 1=h. Thus, a time out of 3 hours was specified for 
LAC executions. All configurations that exceeded this time 
limit were interrupted.  EPCH was tuned with Fig.7  integer 
values from 1 to 5 for the dimensionalities of its histograms 
and several real values varying from 0 to 1 were tried for the 
outliers’ threshold. 

 

 
 

Fig 6:  Illustration of Soft Clustering method 
 

Its parameter   was defined as suggested in COPAC’s 
original publication and received the smallest value 
between k and the known size of the smallest cluster present 
in each data set .In a nutshell: 1) we initially created axes 
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aligned, elliptical clusters of random sizes that follow 
normal distributions with random means and random 
variances in at least 50 percent of the axes, spreading 
through at most 15 percent of these axes domains. In other 
axes, the irrelevant ones, all clusters follow the uniform 
distribution, spreading through the whole axes domains; 
and 2) an optional data rotation allowed creating clusters 
not aligned to the original axes. In this step, each data set 
was rotated four times in random planes and random 
degrees. The behavior of our techniques varies based on two 
parameters: alpha and H. This section analyses how they 
affect our methods. We varied both parameters for Halite, 
Halite0, and Halite’s to maximize the techniques. Each data 
set and technique, we modified the best configuration, 
changing one parameter at a time, and analyzed the 
technique’s behavior. 
  For example, when varying H for a data set and a 
technique, the value of α was fixed at the value in the 
respective best configuration. The tested values of α and H 
vary from 1:0E _ 3 to 1:0E _ 160 and from four to 80, 
respectively. We report the results of Halite0. Figs. 7 show 
results .Notice: the values of _ that led to the best Quality 
vary from 1:0E _ 5 to 1:0E _ 20 and the runtime was barely 
affected by changes in α. Concerning H, Figs. 7n and 7o 
show that the Quality does not increase for H higher than 
four. But, the runtime increased as expected w.r.t. H. Thus, 
the methods were compared in a scenario with high 
probability of cluster overlap. The images, available at 
“geoeye.com”, amount to 17 MB. Each image was divided 
into equalsized rectangular tiles, from which Haar wavelets 
features were extracted. The process led to a 10D data set of 
14,336 points.  

 
Fig 7:  Halite is shown in black vertical crossing lines 

D. Tests on large datasets 
 The purpose of this experiment was to test the scalability of 
the Halite algorithm in clustering very large real world data 
sets. We selected a large data set from a health insurance 
database. The data set consists of 500000 records, each 
being described by 34 categorical attributes in which 4 have 
more than 1000 categories each. We tested two scalabilities 
of the algorithm using this large data set. The first one is the 
scalability of the algorithm against the number of clusters 
for a given number of objects and the second is the 
scalability against the number of objects for a given number 
of clusters. If we plot in the figures, it would represent the 
average time performance of 5 independent runs. 
           These results are very encouraging because they 
show clearly a linear increase in time as both the number of 
clusters and number of records increase. Clustering half a 
million objects into 100 clusters took about an hour, which 
is quite acceptable. Compared with the results of clustering 
data with mixed values this algorithm is much faster than 
its previous version because it needs many less iterations to 
converge. The above soybean disease data tests indicate that 
a good clustering result should be selected from multiple 
runs of the algorithm over the same data set with different 
record orders and/or different initial modes. This can be 
done in practice by running the algorithm in parallel on a 
parallel computing system. Other parts of the algorithm 
such as the operation to allocate an object to a cluster can 
also be parallelized to improve the performance. 

E. Accuracy 

 
 

Fig 8:  Halite’s accuracy measured graph 
The accuracy in up to 35 percent. Finally, we report 
experiments in a real scenario where soft clustering is 
desirable.  Halite analyzed 25D data for breast cancer 
diagnosis (KDD Cup 2008) at least 11 times faster than five 
previous works, increasing their accuracy input 35 percent.  

 
Halite0 ’s clustering accuracy improves a little  when  we 
use having nonzero values at all  elements, but the time  
required increases too much – in the order of as  compared 
to when using masks of order 3 having  nonzero values only 
at the center and the facing elements. To explain the 
success of the latter masks, we point to a fact: the 
multiresolution allows Halite0 to use masks of a low order 
to efficiently “simulate” masks of higher orders. Fig. gives 
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an intuition on this fact by illustrating masks applied to 
grids in distinct resolutions over a 2D space.     
 Word-based approach to build clusters. It first forms 
initial clusters of the documents, with each cluster 
representing a single word. For instance, Word based   
forms a cluster for the word ‘tiger’ made up of all the 
documents that contain the word ‘tiger’. After that, WBSC 
merges similar clusters are similar if they contain the 
similar set of documents using a hierarchical based 
approach until some stopping criterion is reached. At the 
end, the clusters are displayed based on the words 
associated with them. 

F. Execution Time 
We also measured the execution time of various algorithms. 
Fig. 9 gives the comparison of execution time. 
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  Fig 9:  Execution time of various algorithms 

 
As the graph shows, WBSC outperforms almost all other 
algorithms in execution time, especially as the number of 
documents increases.  

We also tested WBSC [17] on the results from Web 
search engines. We downloaded documents returned from 
the Google search engine (www.google.com) and we apply 
WBSC on them. Limitation on space prohibits us from 
showing all the results. Here we show some of the clusters 
found by WBSC by clustering the top 100 URLs returned 
from searching the term “cardinal”[18][19].The categories 
correspond to the common usage of the word “cardinal” in 
documents over the Web  Figure 10 shows some of the 
clusters formed by WBSC. 

 
Cluster results: Keywords and sample 
documents 

Related 
topic 

Bishops, Catholic, world, Roman, 
Church, cardinals, College, Holy 

1. Cardinals in the Catholic 
Church Catholicpages.com 

2. The Cardinals of the Holy 
Roman Church 

Roman 
Catholic 
Church 
Cardinals 
library 

Dark, Bird, female, color 
1. Cardinal Page 
2. First Internet Bird Club 

Cardinal 
Bird 

Benes, rookie, players, hit, innings, 
runs, Garrett, teams, league, Saturday  

1. St.Louis Cardinals Notes 
2. National League Baseball - 

Brewers vs. Cardinals 

St.Louis 
Cardinals 
(MLB team) 

 
 

  Fig 10: Clusters formed for search term ‘cardinals’ by 
WBSC 

This shows that our algorithm is effective even with the web 
search results. 
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