

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-2, Issue-3, May-2014

85


Abstract—Clustering problems are well known in database

literature for their use in numerous applications.
Multidimensional data always is a challenge for clustering
algorithms. The Halite, fast and scalable clustering method
that looks for clusters in subspaces of multidimensional data.
The tree root corresponds to a hypercube embodying the full
data set. The next level divides the space in a set of 2D
hypercube. The resulting hypercube are divided again,
generating the tree structure. Bump Hunting task refers to
apply for each level of the Counting-tree one d-dimensional
Laplacian mask over the respective grid to spot bumps in the
respective resolution. Specifically the main contributions of
Halite are: Scalability: it is linear in time and space
regarding the data size and dimensionality of the clusters’
subspaces. Usability: it is deterministic, robust to noise,
doesn’t take the number of clusters as an input parameter,
and detects clusters in subspaces generated by original axes
or by their linear combinations, including space rotation.
Effectiveness: it is accurate, providing results with equal or
better quality. It is achieved through word based approach
Generality: it includes a soft clustering approach.

Index Terms— Bump Hunting, Correlation Connected
Objects, Harp , Spotting clusters .

I. INTRODUCTION
 The new Halite method for linear clustering, a fast and
scalable algorithm that spots clusters in subspaces of
multidimensional data using a top down strategy. It
analyzes the point distribution in the “full dimensional”[3]
space by performing a multiresolution, recursive partition
of that space, which helps finding clusters covering regions
with varying sizes, shapes, density, correlated axes, and
number of points. Existing methods are typically
superliner[2] in space or time. It improves the basic Halite0
by providing an optimized implementation strategy for the
Counting-tree, even for the case when it does not fit in main
memory. The Halite0 algorithm has linear space
complexity the number of points, axes and clusters. Thus,
for large data sets, the use of Operational System’s disk

Manuscript received May 12, 2014.
 P.Rubi, Computer Science and Engineering Department, Bharathidasan

University, Tiruchirappalli/Tamilnadu, India, 9790534573., (e-mail:
rubi.joyce04@gmail.com).

M.Govindaraj, Computer Science and Engineering Department,
Bharathidasan University, Tiruchirappalli/Tamilnadu, India, 9443597246.,
(e-mail: mgr@bdu.ac.in).

cache may become a considerable bottleneck. In order to
overcome this problem, Halite has a table-based
implementation that never uses disk cache, regardless of
the input data set. Therefore, it allows us to efficiently
analyze large amounts of data. The idea is to represent the
Counting-tree by tables stored in main memory. Each table
represents one tree level, by storing in key/value entries the
data related to all nonempty cells of that level. Remember
that Halite0 uses cells with the structure where loc is the
cell spatial position inside its parent cell, n is the number of
points in the cell, p[] is an array of half-space counts, used
Cell is a Boolean flag, and ptr is a pointer to the next tree
level.

II. LITERATURE SURVEY

A. Finding Non-Redundant Statistically Significant
Regions in High Dimensional Data: a Novel Approach
to Projected and Subspace Clustering

 Projected and subspace clustering algorithms search for
clusters of points in subsets of attributes. Projected
clustering computes several disjoint clusters, plus outliers,
so that each cluster exists in its own subset of attributes.
Subspace clustering enumerates clusters of points in all
subsets of attributes, typically producing many overlapping
clusters [5][6]. One problem of existing approaches is that
their objectives are stated in a way that is not independent of
the particular algorithm proposed to detect such clusters. A
second problem is the definition of cluster density based on
user-defined parameters, which makes it hard to or whether
they actually stand out in the data in a statistical sense. We
propose a novel problem formulation that aims at extracting
axis-parallel regions that stand out in the data in a
statistical sense. The set of axis-parallel, statistically
significant regions that exist in a given data set is typically
highly redundant. Therefore, formulate the problem of
representing this set through a reduced, non-redundant set
of axis parallel, statistically significant regions as an
optimization problem. Exhaustive search is not a viable
solution due to computational infeasibility, and we propose
the approximation algorithm STATPC. Our
comprehensive experimental evaluation shows that
STATPC significantly outperforms existing projected and
subspace clustering algorithms in terms of accuracy.

Fast and Highly Scalable Multiresolution
Linear Word based Clustering in

Multidimensional data
P.Rubi , M.Govindaraj

Fast and Highly Scalable Multiresolution Linear Word based Clustering in Multidimensional data

86

B. Computing Clusters of Correlation Connected
Objects
The detection of correlations between different features

in a set of feature vectors is a very important data mining
task because correlation indicates a dependency between
the features or some association of cause and between them.
This association can be arbitrarily complex, i.e. one or more
features might be dependent from a combination of several
other features. Well-known methods like the principal
components analysis (PCA) can perfectly and correlations
which are global, linear, not hidden in a set of noise vectors,
and uniform. In many applications such as medical
diagnosis, molecular biology, credit card fraud, monitoring
of criminal activities, time sequences, or electronic
commerce, however, correlations are not global since the
dependency between features can be different indifferent
subgroups of the set. In this paper, we propose a method
called 4C (Computing Correlation Connected Clusters) to
identify local subgroups of the data objects sharing a
uniform but arbitrarily complex correlation. Our algorithm
is based on a combination of PCA and density-based
clustering. Our method has a determinate result and is
robust against noise.

C. Iterative Projected Clustering by Subspace Mining
 Irrelevant attributes add noise to high-dimensional clusters
and render traditional clustering techniques inappropriate.
In this paper, we realize the analogy between mining
frequent item sets and discovering dense projected clusters
around random points. Based on this, we propose a
technique that improves the efficiency of a projected
clustering algorithm. Our method is an optimized
adaptation of the frequent pattern tree growth method used
for mining frequent item sets [8]. We propose several
techniques that employ the branch and bound paradigm to
efficiently discover the projected clusters. An experimental
study with synthetic and real data demonstrates that our
technique significantly improves on the accuracy and speed
of previous techniques CLUSTERING partitions a
collection of objects S into a set of groups, such that the
similarity between objects of the same group is high and
objects from different groups are dissimilar. Clustering
finds many applications in marketing image analysis,
bioinformatics, document classification, indexing, etc. In
many such applications, the objects to be clustered are
represented by points in a high-dimensional space, where
each dimension corresponds to an attribute/feature and the
feature value of each object determines its coefficient in the
corresponding dimension. A distance measure between two
points is used to measure the dissimilarity between the
corresponding objects.

D. Harp: A Practical Projected Clustering Algorithm
The main theme of this thesis is to study the feasibility of
extracting useful information from gene expression profiles
by a relatively new data mining approach known as
projected clustering. This is a multi-disciplinary topic,
involving research efforts from areas such as data mining,
applied mathematics, genetics and genomics. This chapter
consists of two main parts. The first part provides a short

overview of the objectives and methods of data mining, and
quickly moves to the topic of clustering and finally
projected clustering. The second part starts with an
introduction to bioinformatics in general, and then narrows
down to microarray technology and gene expression
profiles, and finally focuses on some clustering methods
proposed for gene expression profile analysis. Clustering is
a process to group similar objects together. Before directly
jumping into the detailed discussion of clustering, it is
instrumental to spend some time on the format of data that
can be clustered. In the following definitions, the preferred
terms of some concepts appear first and some alternative
terms that have the same or similar meanings are listed in
brackets. A cluster is defined as a non-empty subset of the
objects, which are called the members of the cluster. The
centroid of a cluster is a virtual object with its projected
value on each dimension equal to the arithmetic mean of the
projected values of all the cluster members on the
dimension1 Two clusters are disjoint (non-overlapping) if
they contain no common objects, and a set of clusters is
disjoint if all clusters in it are pair wise disjoint. A
clustering algorithm is said to produce disjoint clusters if
the clusters that it produces are always disjoint. Otherwise,
the algorithm is said to produce non-disjoint clusters, even
the clusters are not always non-disjoint. Some objects that
do not fit into any cluster can be left UN clustered. They are
called the outliers of the dataset, which are reported on a
separate outlier list.

E. Locally adaptive metrics for clustering high
dimensional data

Clustering suffers from the curse of dimensionality, and
similarity functions that use all input features with equal
relevance may not be effective. We introduce an algorithm
that discovers clusters in subspaces spanned by different
combinations of dimensions via local weightings of
features. This approach avoids the risk of loss of
information encountered in global dimensionality
reduction techniques, and does not assume any data
distribution model. Our method associates to each cluster a
weight vector, whose values capture the relevance of
features within the corresponding cluster. We
experimentally demonstrate the gain in performance our
method achieves with respect to competitive methods,
using both synthetic and real datasets. In particular, our
results show the feasibility of the proposed technique to
perform simultaneous clustering of genes and conditions in
gene expression data, and clustering of very
high-dimensional data such as text data Clustering suffers
from the curse of dimensionality problem in
high-dimensional spaces. In high dimensional spaces, it is
highly likely that, for any given pair of points within the
same cluster, there exist at least a few dimensions on which
the points are far apart from each other. Furthermore,
several clusters may exist in different subspaces, comprised
of different combinations of features. In many real world
problems, in fact, some points are correlated with respect to
a given set of dimensions, and others are correlated with
respect to different dimensions. Each dimension could be
relevant to at least one of the clusters. The problem of high
dimensionality could be addressed by requiring the user to
specify a subspace for cluster analysis. More importantly,

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-2, Issue-3, May-2014

87

correlations that identify clusters in the data are likely not to
be known by the user.

F. Locally adaptive metrics for clustering high
dimensional data

Clustering suffers from the curse of dimensionality, and
similarity functions that use all input features with equal
relevance may not be effective. We introduce an algorithm
that discovers clusters in subspaces spanned by different
combinations of dimensions via local weightings of
features. This approach avoids the risk of loss of
information encountered in global dimensionality
reduction techniques, and does not assume any data
distribution model. Our method associates to each cluster a
weight vector, whose values capture the relevance of
features within the corresponding cluster. We
experimentally demonstrate the gain in performance our
method achieves with respect to competitive methods,
using both synthetic and real datasets. In particular, our
results show the feasibility of the proposed technique to
perform simultaneous clustering of genes and conditions in
gene expression data, and clustering of very
high-dimensional data such as text data Clustering suffers
from the curse of dimensionality problem in
high-dimensional spaces. In high dimensional spaces, it is
highly likely that, for any given pair of points within the
same cluster, there exist at least a few dimensions on which
the points are far apart from each other. Furthermore,
several clusters may exist in different subspaces, comprised
of different combinations of features. In many real world
problems, in fact, some points are correlated with respect to
a given set of dimensions, and others are correlated with
respect to different dimensions. Each dimension could be
relevant to at least one of the clusters. The problem of high
dimensionality could be addressed by requiring the user to
specify a subspace for cluster analysis. More importantly,
correlations that identify clusters in the data are likely not to
be known by the user.

III. SYSTEM ARCHITECTURE DESIGN
The structure of the system which comprises system
components, the externally visible properties of those
components, the relationships between them, and provides
a plan from which products can be procured, and systems
developed, that will work together to implement the overall
system.
As far as the data allocation strategies are concerned, our
work is mostly relevant to watermarking that is used as a
means of establishing original ownership of distributed
objects. Our approach and watermarking are similar in the
sense of providing agents with some kind of receiver
identifying information. By its very nature, a watermark
modifies the item being watermarked. If the object to be
watermarked cannot be modified, then a watermark cannot
be inserted. In such cases, methods that attach watermarks
to the distributed data are not applicable.

Fig 1: System Design

IV. CLASSIFICATION & RETRIEVAL

A. Dataset Partition
 The data set partition by ensuring that each point belongs
to at most one cluster. The data contain a pair of clusters
that overlap, making any data set partitions not a good
choice, provided that the points in light-gray should belong
to both clusters. In cases like that, the so-called soft
clustering methods are more appropriate, since they allow
points in the overlapping spaces to belong to more than one
cluster.

B. Spotting clusters
 It generalizes the structure of these systems to the
d-dimensional case in order to describe clusters of any
shape and size, hence its name Halite. Halite uses spatial
convolution masks in a novel way to efficiently detect
density variations in a multi scale grid structure that
represents the input data, thus spotting clusters. These
masks are extensively used in digital image processing to
detect patterns in images Spot Point: To encode an input
data set, selecting a minimal code length.

C. Spot points
 The Minimum Description Length (MDL) principle is
also used in a novel way. Its idea is to encode an input data
set, selecting a minimal code length. Halite uses MDL to
automatically tune a density threshold. The data
distribution, which helps spotting the clusters’ subspaces.
Finally, Halite includes a compression-based analysis to
spot points that most likely belong to two or more clusters
that overlap in the space. It allows soft clustering results.

 Fig 2: Spot points

D. Bump Hunting
The “Bump Hunting” spots cells on the “positive” side of

the largest, local density changes, but it does not guarantee

Fast and Highly Scalable Multiresolution Linear Word based Clustering in Multidimensional data

88

that these changes are statistically significant – some of
them could have been created by chance. Even when
analyzing only points randomly distributed through a
d-dimensional space, the mask will return bumps. This
strategy allows Halite0 to identify the best resolution to spot
each bump, as this resolution is the one in which the
respective local density change is more intense, thus, it
avoids overestimating the clusters bounds and spotting only
clusters’ borders. It also spots the right moment to stop the
“Bump hunting” it stops once, in all resolutions, the
clearest bump was potentially created by chance.

E. Counting Tree
 The Counting-tree by tables stored in main memory
and/or disk. Each table represents one tree level, by storing
in key/value entries the data related to all nonempty cells of
that level. Remember that Halite0 uses cells with the
structure where loc is the cell spatial position inside its
parent cell, n is the number of points in the cell, P is an
array of half-space counts, used Cell is a Boolean flag, and
ptr is a pointer to the next tree level. For Halite, this cell
structure was slightly modified. Here, the pointer ptr does
not exist and loc has the absolute position for the cell. In a
key/value pair, loc is the key, and the other attributes form
the value.
The data storage for Halite: The tables shown consist in a
different way of storing the Counting tree of Fig. 3c. Both
approaches represent the same data, the 2D data set from
the one.

Fig 3: Counting Tree Construction

V. METHODOLOGY AND IMPLEMENTATION

A. Finding β -Clusters
The second phase of Halite0 uses the counts in the tree to

spot bumps in the space with all axes that indicate
β-clusters. Halite0 looks for β-clusters by applying

convolution masks over each level of the Counting-tree. We
name this task “Bump Hunting.” The masks are integer

approximations of the Laplacian filter, a second-derivative
operator that reacts to transitions in density. Figs. 3d and 3e

show examples of 1D and 2D Laplacian masks,
respectively. In a nutshell, the “Bump Hunting” task refers

to: to apply for each level of the Counting-tree one
d-dimensional Laplacian mask over the respective grid to
spot bumps in the respective resolution. Fig. 4a illustrates

the process on a toy 1D data set with grids in five
resolutions. To spot bumps, for each cell of each resolution,
the 1D mask is applied as follows: multiply the cell’s count

of points by the mask’s center value. Multiply the point
count of each neighbor of the cell by the respective mask

value, and get the convoluted value for the cell by summing
the results of the multiplications. After visiting all cells in
one resolution, the cell with the largest convoluted value
represents the clearest bump in that resolution, i.e., the

largest positive magnitude of the density gradient. In Fig.
4a, for each resolution, one dark-gray arrow points to this

cell.

Fig 4: Coarser Resolutions

B. Halite Algorithm
 The Halite method for local correlation clustering. It
improves the basic Halite0 by providing an optimized
implementation strategy for the Counting-tree, even for the
case when it does not fit in main memory. The Halite0
algorithm has linear space complexity the number of
points, axes and clusters. However, using the recommended
configuration, the amount of memory required by it in our
previous experiments of varied between 25 and 50 percent
of the data size, depending on the point’s distribution.
Thus, for large data sets, the use of Operational System’s
disk cache may become a considerable bottleneck. In order
to overcome this problem, Halite has a table-based
implementation that never uses disk cache, regardless of
the input data set. Therefore, it allows us to efficiently
analyze large amounts of data. For Halite, cell structure was
slightly modified. Here, the pointer ptr does not exist and
loc has the absolute position for the cell. In a key/value pair,
loc is the key, and the other attributes form the value. Fig.
5 exemplifies the data storage for Halite. The tables shown
consist in a different way of storing the Counting tree both
approaches represent the same data, the 2D data set.

 Illustration of our soft clustering method Halites:
Beta-clusters may stay apart if they are incompatible,

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-2, Issue-3, May-2014

89

resulting in soft clustering are merged together. The
compression-based formulas of Halite’s automatically
make the right choice.

C. BETA Cluster Algorithm
The “Bump Hunting” task allows one to efficiently spot

the clearest bumps in a data set. However, two open
questions still prevent its use for clustering: 1) what is the
best resolution to spot each bump? And 2) when should the
“Bump Hunting” stop? To give an intuition on both
questions, we use again the 1D data with grids in five
resolutions from Fig. 4a. A dark-gray arrow points to the
cell with the largest convoluted value, which describes the
clearest bump in the data for each resolution.

Notice: a procedure to automatically identify the best
resolution to spot a bump is still missing, which refers to
question one. In the example, the bump is best described in
the third coarsest resolution, as its bounds are
overestimated in the two coarser resolutions and only its
borders are spotted in the two finer resolutions. In the
example, ignoring the bump’s region, a white arrow points
to the cell with the largest convoluted value for each
resolution, which, clearly, doesn’t lead to a cluster. Thus,
the “Bump Hunting” should stop.

Fig 5: Storing the counting tree

Notice that the “Bump Hunting” spots cells on the
“positive” side of the largest, local density changes, but it
does not guarantee that these changes are statistically
significant some of them could have been created by
chance. Even when analyzing only points randomly
distributed through a d-dimensional space, the mask will
return bumps. Therefore, we propose to automatically
answer both questions previously posed by ignoring bumps
that, potentially, were created by chance, assuming that
only statistically significant bumps lead to clusters. This
strategy allows Halite0 to identify the best resolution to spot
each bump, as this resolution is the one in which the
respective local density change is more intense, thus, it
avoids overestimating the clusters bounds and spotting only
clusters’ borders. Notice that the “Bump Hunting” spots
cells on the “positive” side of the largest, local density
changes, but it does not guarantee that these changes are
statistically significant some of them could have been
created by chance. Even when analyzing only points
randomly distributed through a d-dimensional space, the

mask will return bumps. Therefore, we propose to
automatically answer both questions previously posed by
ignoring bumps that, potentially, were created by chance,
assuming that only statistically significant bumps lead to
clusters. This strategy allows Halite0 to identify the best
resolution to spot each bump, as this resolution is the one in
which the respective local density change is more intense,
thus, it avoids overestimating the clusters bounds and
spotting only clusters’ borders.

 The evaluation of a clustering result the quality of the
uncovered relevant axes is similar. We also computed the
harmonic mean of the averaged precision for all found
clusters and the averaged recall for all real clusters, but we
exchanged the sets of points in the two last equations,
precision and recall, by sets of axes. We name this
harmonic mean as Subspaces Quality. In the cases where a
technique does not find clusters in a data set, the value zero
is assumed for both qualities. Halite uses fixed input
parameter values, as defined in Halite0 was tuned in the
same way.

The other algorithms were tuned as follows: ORCLUS,
LAC, EPCH, CFPC, and HARP received as input the
number of clusters present in each data set. Also, the known
percent of noise for each data set was informed to HARP.
The extra parameters of the previous works were tuned as in
their original authors’ instructions. LAC was tested with
integer values from 1 to 11, for the parameter 1=h.
However, its runtime differed considerably with distinct
values of 1=h. Thus, a time out of 3 hours was specified for
LAC executions. All configurations that exceeded this time
limit were interrupted. EPCH was tuned with Fig.7 integer
values from 1 to 5 for the dimensionalities of its histograms
and several real values varying from 0 to 1 were tried for the
outliers’ threshold.

Fig 6: Illustration of Soft Clustering method

Its parameter was defined as suggested in COPAC’s
original publication and received the smallest value
between k and the known size of the smallest cluster present
in each data set .In a nutshell: 1) we initially created axes

Fast and Highly Scalable Multiresolution Linear Word based Clustering in Multidimensional data

90

aligned, elliptical clusters of random sizes that follow
normal distributions with random means and random
variances in at least 50 percent of the axes, spreading
through at most 15 percent of these axes domains. In other
axes, the irrelevant ones, all clusters follow the uniform
distribution, spreading through the whole axes domains;
and 2) an optional data rotation allowed creating clusters
not aligned to the original axes. In this step, each data set
was rotated four times in random planes and random
degrees. The behavior of our techniques varies based on two
parameters: alpha and H. This section analyses how they
affect our methods. We varied both parameters for Halite,
Halite0, and Halite’s to maximize the techniques. Each data
set and technique, we modified the best configuration,
changing one parameter at a time, and analyzed the
technique’s behavior.
 For example, when varying H for a data set and a
technique, the value of α was fixed at the value in the
respective best configuration. The tested values of α and H
vary from 1:0E _ 3 to 1:0E _ 160 and from four to 80,
respectively. We report the results of Halite0. Figs. 7 show
results .Notice: the values of _ that led to the best Quality
vary from 1:0E _ 5 to 1:0E _ 20 and the runtime was barely
affected by changes in α. Concerning H, Figs. 7n and 7o
show that the Quality does not increase for H higher than
four. But, the runtime increased as expected w.r.t. H. Thus,
the methods were compared in a scenario with high
probability of cluster overlap. The images, available at
“geoeye.com”, amount to 17 MB. Each image was divided
into equalsized rectangular tiles, from which Haar wavelets
features were extracted. The process led to a 10D data set of
14,336 points.

Fig 7: Halite is shown in black vertical crossing lines

D. Tests on large datasets
 The purpose of this experiment was to test the scalability of
the Halite algorithm in clustering very large real world data
sets. We selected a large data set from a health insurance
database. The data set consists of 500000 records, each
being described by 34 categorical attributes in which 4 have
more than 1000 categories each. We tested two scalabilities
of the algorithm using this large data set. The first one is the
scalability of the algorithm against the number of clusters
for a given number of objects and the second is the
scalability against the number of objects for a given number
of clusters. If we plot in the figures, it would represent the
average time performance of 5 independent runs.
 These results are very encouraging because they
show clearly a linear increase in time as both the number of
clusters and number of records increase. Clustering half a
million objects into 100 clusters took about an hour, which
is quite acceptable. Compared with the results of clustering
data with mixed values this algorithm is much faster than
its previous version because it needs many less iterations to
converge. The above soybean disease data tests indicate that
a good clustering result should be selected from multiple
runs of the algorithm over the same data set with different
record orders and/or different initial modes. This can be
done in practice by running the algorithm in parallel on a
parallel computing system. Other parts of the algorithm
such as the operation to allocate an object to a cluster can
also be parallelized to improve the performance.

E. Accuracy

Fig 8: Halite’s accuracy measured graph
The accuracy in up to 35 percent. Finally, we report
experiments in a real scenario where soft clustering is
desirable. Halite analyzed 25D data for breast cancer
diagnosis (KDD Cup 2008) at least 11 times faster than five
previous works, increasing their accuracy input 35 percent.

Halite0 ’s clustering accuracy improves a little when we
use having nonzero values at all elements, but the time
required increases too much – in the order of as compared
to when using masks of order 3 having nonzero values only
at the center and the facing elements. To explain the
success of the latter masks, we point to a fact: the
multiresolution allows Halite0 to use masks of a low order
to efficiently “simulate” masks of higher orders. Fig. gives

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-2, Issue-3, May-2014

91

an intuition on this fact by illustrating masks applied to
grids in distinct resolutions over a 2D space.
 Word-based approach to build clusters. It first forms
initial clusters of the documents, with each cluster
representing a single word. For instance, Word based
forms a cluster for the word ‘tiger’ made up of all the
documents that contain the word ‘tiger’. After that, WBSC
merges similar clusters are similar if they contain the
similar set of documents using a hierarchical based
approach until some stopping criterion is reached. At the
end, the clusters are displayed based on the words
associated with them.

F. Execution Time
We also measured the execution time of various algorithms.
Fig. 9 gives the comparison of execution time.

0 .0 0
20 .0 0
40 .0 0
60 .0 0
80 .0 0

1 0 0 .0 0
1 2 0 .0 0
1 4 0 .0 0

2 00 40 0 6 0 0 8 0 0 1 0 0 0 1 20 0 14 0 0
Ex
ec
ut
io
n t
im
e (
in
 m
in
ut
es
)

N u m b er o f d oc uments

W B S C K -M eans

B uckshot F ractio natio n

 Fig 9: Execution time of various algorithms

As the graph shows, WBSC outperforms almost all other
algorithms in execution time, especially as the number of
documents increases.

We also tested WBSC [17] on the results from Web
search engines. We downloaded documents returned from
the Google search engine (www.google.com) and we apply
WBSC on them. Limitation on space prohibits us from
showing all the results. Here we show some of the clusters
found by WBSC by clustering the top 100 URLs returned
from searching the term “cardinal”[18][19].The categories
correspond to the common usage of the word “cardinal” in
documents over the Web Figure 10 shows some of the
clusters formed by WBSC.

Cluster results: Keywords and sample
documents

Related
topic

Bishops, Catholic, world, Roman,
Church, cardinals, College, Holy

1. Cardinals in the Catholic
Church Catholicpages.com

2. The Cardinals of the Holy
Roman Church

Roman
Catholic
Church
Cardinals
library

Dark, Bird, female, color
1. Cardinal Page
2. First Internet Bird Club

Cardinal
Bird

Benes, rookie, players, hit, innings,
runs, Garrett, teams, league, Saturday

1. St.Louis Cardinals Notes
2. National League Baseball -

Brewers vs. Cardinals

St.Louis
Cardinals
(MLB team)

 Fig 10: Clusters formed for search term ‘cardinals’ by
WBSC

This shows that our algorithm is effective even with the web
search results.

ACKNOWLEDGMENT
First of all I wish to express my profound thanks to God
almighty for his abundant blessing. I would like to thank
Mr.M.Govindaraj, Professor, Department of Computer
Science and Engineering, Bharathidasan University,
Tiruchirappalli for his cheerful encouragement helped me
through seemingly endless details. Finally thanks to my
parents, brother, sister and my friends for their
wholehearted support throughout this project.

REFERENCES
[1] R.L.F.Cordeiro,A.J.M. Traina,C.Faloutsos and C. Traina Jr., .,

“Finding Clusters in Subspaces of Very Large, Multi-Dimensional
Data Sets,” Proc. IEEE 26th Int’1 Conf.Data
Eng.(ICDE),pp.625-636,2010.

[2] R.C. Gonzalez and R.E. Woods, Digital Image Processing, third ed.
Prentice-Hall, Inc., 2006.

[3] P.D. Grunwald, I.J. Myung, and M.A. Pitt, Advances in Minimum
 Description Length: Theory and Applications (Neural Information
 Processing). The MIT Press, 2005.
 [4] C. Traina Jr., A.J.M. Traina, C. Faloutsos, and B. Seeger,“Fast
 Indexing and Visualization of Metric Data Sets Using Slim-Trees,”
 IEEE Trans. Knowledge Data Eng., vol. 14, no. 2, pp. 244-260, Mar./

 Apr. 2002.
 [5] C. Traina Jr., A.J.M. Traina, L. Wu, and C. Faloutsos, “Fast Feature

 Selection Using Fractal Dimension,” Proc. 15th Brazilian Symp.
 Databases (SBBD), pp. 158-171, 2000.

 [6] H.-P. Kriegel, P. Kro¨ger, and A. Zimek, “Clustering High-
 Dimensional Data: A Survey on Subspace Clustering, Pattern-

Based Clustering, and Correlation Clustering,” ACM Trans.
Knowledge Discovery from Data, vol. 3, no. 1, pp. 1-58, 2009.

[7] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and D.
Papadopoulos, “Locally Adaptive Metrics for Clustering High
Dimensional Data,” Data Mining and Knowledge Discovery, vol. 14,
no. 1, pp. 63-97, 2007.

 [8] A.K.H. Tung, X. Xu, and B.C. Ooi, “Curler: Finding and
Visualizing Nonlinear Correlation Clusters,” Proc. ACM SIGMOD
Int’l Conf. Management of Data, pp. 467-478, 2005.

 [9] C. Aggarwal and P. Yu, “Redefining Clustering for High-
Dimensional Applications,” IEEE Trans. Knowledge and Data Eng.,
vol. 14, no. 2, pp. 210-225, Mar./Apr. 2002 .

 [10] E.K.K. Ng, A.W. chee Fu, and R.C.-W. Wong, “Projective
 Clustering by Histograms,” IEEE Trans. Knowledge and Data Eng.,
 vol. 17, no. 3, pp. 369-383, Mar. 2005.
 [11] G. Moise, J. Sander, and M. Ester, “Robust Projected Clustering,”
 Knowledge Information Systems, vol. 14, no. 3, pp. 273-298, 2008.
[12] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic

Subspace Clustering of High Dimensional Data for Data Mining
Applications,” SIGMOD Record, vol. 27, no. 2, pp. 94- 105, 1998.

 [13] C.C. Aggarwal, J.L. Wolf, P.S. Yu, C. Procopiuc, and J.S. Park,
 “Fast Algorithms for Projected Clustering,” SIGMOD Record, vol.
 28, no. 2, pp. 61-72, 1999.
 [14] M.L. Yiu and N. Mamoulis, “Iterative Projected Clustering by
 Subspace Mining,” IEEE Trans. Knowledge and Data Eng., vol. 17,
 no. 2, pp. 176-189, Feb. 2005.
 [15] K. Yip, D. Cheung, and M. Ng, “Harp: A Practical Projected
 Clustering Algorithm,” IEEE Trans. Knowledge and Data Eng., vol.

Fast and Highly Scalable Multiresolution Linear Word based Clustering in Multidimensional data

92

 16, no. 11, pp. 1387-1397, Nov. 2004.
 [16] G. Moise and J. Sander, “Finding Non-Redundant, Statistically
 Significant Regions in High Dimensional Data: A Novel Approach
 to Projected and Subspace Clustering,” Proc. 14th ACM SIGKDD

 Int’l Conf. Knowledge Discovery Data Mining (KDD), pp.
 533-541, 2008

[17] Douglass R. Cutting, David R. Karger, Jan O. Pedersen, John W.
 Tukey, Scatter/Gather: A Cluster-based Approach to Browsing
 Large Document Collections, In Proceedings of the Fifteenth
 Annual International ACM SIGIR Conference, pp 318-329, June
 1992.
[18] Dean, P. M. Ed., Molecular Similarity in Drug Design, Blackie
 Academic & Professional, 1995, pp 111 –137.
[19] D. R. Hill, A vector clustering technique, in: Samuelson (Ed.),

Mechanized Information Storage, Retrieval and Dissemination,
North-Holland, Amsterdam, 1968.

