

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

ISSN: 2347-5552, Volume-10, Issue-6, November 2022

 https://doi.org/10.55524/ijircst.2022.10.6.18

Article ID IRP1331, Pages 101-109

www.ijircst.org

Innovative Research Publication 101

Software Bug Reports: Automatic Keyword and Sentence-Based

Text Summarization Using Artificial Intelligence

Zaid Altaf1, and Ashish Oberoi2

1M. Tech Scholar, Department of Computer Science & Engineering, RIMT University, Mandi Gobindgarh, Punjab, India
2Assistant Professor, Department of Computer Science & Engineering, RIMT University, Mandi Gobindgarh, Punjab, India

Correspondence should be addressed to Shakir Fayaz Reshi; abrarrashid57@gmail.com

Copyright © 2022 Made Zaid Altaf et al. This is an open-access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- The purpose of text summarization is to

quickly and accurately extract the most important data

from papers. The proposed unsupervised method seeks to

synthesise complete and informative bug reports (software

artefacts). The suggested approach employs Rapid Auto-

matic Keyword Extraction and the term frequency-inverse

document frequency method to identify applicable

keywords and phrases. During the sentence extraction

procedure, fuzzy C-means clustering is used to prioritise

sentences that have a high degree of membership in each

cluster (beyond a predefined threshold). The selection of

sentences is performed by a rule-engine. Information is

extracted using keywords and sentences chosen by the

clustering process, and the rules are developed using

domain knowledge. The proposed method produces a

logical and well-organized summary of apache bug

reports. The retrieval summary is improved with the help

of hierarchical clustering by removing unnecessary details

and rearranging them. The Apache Project Bug Report

Corpus (APBRC) and the original Bug Report Corpus are

used to evaluate the effectiveness of the proposed method.

Measures of performance such as precision, recall,

pyramid precision, and F-score are used to evaluate the

results. Experiment results demonstrate that our proposed

method significantly outperforms the state-of-the-art

baseline methods like BRC and LRCA. In addition, it

achieves substantial gains compared to prior art

unsupervised methods as Hurried and centroid. It extracts

the most relevant keyword phrases and sentences from

each cluster to offer comprehensive coverage and a

coherent summary. The average values for precision,

recall, f-score, and pyramid precision on the APBRC

corpus are 78.22%, 82.18%, 80.10%, and 81.66%,

respectively.

KEYWORDS- Rapid Automatic Keyword Extraction,

Text Summarization, Fuzzy C-Means, Bug Reports,

Hierarchical Clustering, Rule Engine.

I. INTRODUCTION

Many domains' information is now online. Reading

complete text documents and finding essential information

is difficult and time-consuming with so much material.

Text summary automatically extracts relevant information.

Summarizing a text document takes human intelligence to

extract useful information. Document, essay, news, and

email summarization have all employed automatic text

summarization [1–6]. Many open source projects have

their bug reports handled by Jira, Bugzilla, or another

software repository [7-9]. Therefore, many procedures,

such as the triage of reports [13–15], the resolution of bugs

[10, 11], and the detection of duplicate bug reports [10, 11],

are affected. have been automated in order to handle the

large number of reports. Software testers and developers

must read hundreds-sentence issue reports to complete

their duties. Since bug report history is not a generic text

summary, testers and developers need subject knowledge.

This research summarises bug reports, the most valuable

software project artefacts. Name, brief description, BugID,

detailed description, contributor comments, and more are

all included. The information gathered from this helps in

the search for and resolution of software defects. In order

to aid engineers in fixing bugs, there is new study

focussing on bug summaries. Reading and understanding a

bug report is tiresome.

Abstractive and extractive algorithms exist in literature.

Abstract summarization modifies text semantics, word

order, and natural language with the same context. Deep

learning advances this field. Researchers have found that

CNNs, RNNs, RL, and GANs all perform very well when

it comes to predicting outcomes. Since deep learning is

supervised and conventional golden summaries are not

available in all domains, training data is the key drawback.

Extractive summarization condenses text by extracting

sentences in the same order and language. Both supervised

[19–21] and unsupervised [22, 23] methods have been

presented in the literature to summarise bug reports. To

create a Bug Report Corpus, Rastkar et al. [19] supervised

compilation of 36 bug reports from open source projects.

Each report of a bug is distinct in 24 different ways, such

as its vocabulary, contributors, length, and organization.

Annotator-created "golden summaries" were used to train

a logistic regression classifier. Statistical analysis revealed

a 57% accuracy rate, 35% recall, 40% f-score, and 66%

accuracy rate in the pyramid. Attempting to enhance [19],

Jiang et al. presented PRST [20]. The authors created

Modified Bug Report Corpus using 36 BRC bug reports

and their duplicates [19]. (MBRC). Page-rank algorithm

calculates textual similarity, and logistic regression

classifier calculates sentence probability. Merged results

were summarised using high-probability phrases. There

was a modest uptick in accuracy, pyramid accuracy, recall,

and f-score.

In contrast, an unsupervised method ranks sentences

according to some metric and uses the highest-scoring ones

to compile a summary. Lotufo et al. [23] devised an

http://www.ijircst.org/

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 102

unsupervised method for generating summaries by

observing how developers interacted with a lengthy report.

Multi-model resampling (MMR), centroid sampling,

diverse rank, and grasshopper sampling were all used by

Mani et al. Keyword analysis, lexical matching, and

sentence weight were used in the aforementioned studies

[19, 20].

We use an unsupervised strategy to summarise bug reports

using keyword- and sentence-based characteristics.

Extracting features from a set of keywords is done with the

help of tf-idf and RAKE. Statistical methods geared toward

corpora have been used in keyword extraction methods

[24, 25]. Using natural language processing to identify

speech chunks and then combining that information with

statistical, machine learning, or supervised methods,

document-oriented approaches [26] tackled this issue.

RAKE, a language-independent, domain-independent,

unsupervised algorithm, avoids these issues. It provides

reasonable precision, simplicity, and computing efficiency

[27]. Fuzzy C-means clustering is utilised for sentence-

based feature extraction instead of length, location, title

word, thematic word, and others [19], [28], [29].

First, BRCS extracts bug reports from five Apache

Software Foundation projects [30]. APBRC contains one-

line descriptions, extended descriptions, and contributor

comments from 21 bug reports (Apache Project Bug

Report Corpus). Standard preparation processes separate

bug report content into sentences.

Keyword extraction precedes feature extraction. Keyword

features are tf-idf and RAKE keywords. RAKE scores

concepts/words by assessing their sentence content. Text

content words are used to calculate each keyword or

keyword phrase's score. RAKE extracts longer phrases

with more meaning than tf-idf. Authors use tf-idf to

identify unigram terms not taken by RAKE.

The best method for classifying sentences into groups

based on their shared characteristics was found using a

combination of Gap Statistics, K-means, Silhouette, and

with-in-squares. Bug reports use fuzzy C-means clustering

based on optimal cluster. Each word or phrase is placed in

the group that has the smallest Euclidean distance to its

center. Select high-membership sentences from each

cluster.

The third step is selecting sentences to use in the extractive

summary once all features have been culled. Reduced by

20%, the bug report. Results showed that the method was

superior to state-of-the-art algorithms in terms of accuracy,

recall, f-score, and pyramid accuracy.

Hierarchical clustering generates a brief summary after the

summary. Dendrograms rearrange sentences and choose

the superior of two identical ones to create a streamlined

summary free of superfluous information.

This document is structured. Section II describes the

study's motivation. Section IV discusses research

methodology, and Part III presents preliminary ideas for

the proposed approach. Step-by-step instructions for the

proposed method are presented in Section V, and the

results are discussed in Section VI. Possibilities that the

validity claims may not hold up are detailed in Section VII.

The following section, Eight, discusses relevant research.

The final section of the paper concludes the discussion.

II. LITERATURE REVIEW

Software systems value bug reporting most. It includes

developer comments, predefined fields, an id, a

description, and a title. In the past, 200 bug reports in the

Mozilla open-source project meant 275 bug reports. Many

sentences are repeated in each bug report, making it

difficult to read and understand for both testers and

developers. Time spent by software testers has been

reduced thanks to a new technique for summarising bug

reports.

Our goal is to create a unique, revolutionary automatic text

summarization system that detects bug report domain

knowledge and generates high-quality bug summaries.

Sentences that start with ", ", "tmp field," "sql," ", ", "public

static," and "=" are examples of summary sentences. The

most important parts of a bug summary, the description

and comments, are inaccessible to text mining techniques

like tf-idf, unigram, bigram, and centroid. The author

employed RAKE to extract code snippets from bug report

textual data, which has not been done before [19–21].

Instead of optimization, centroid-based fuzzy clustering is

used to identify key sentences. Fuzzy clustering

outperforms unsupervised methods [22, 23]. A rule engine

creates an unsupervised bug report summary by combining

keywords and sentences. Hierarchical clustering removes

unnecessary sentences based on dendograms and re-ranks

them to create a compact summary.

III. PRELIMINARY CONCEPTS

This section discusses bug report summarising concepts. It

has automatic keyword extraction from bug reports, fuzzy

clustering, and hierarchical clustering.

A. Text Pre-Processing

The raw bug reports must be processed before a summary

can be created.Segmentation, tokenization, stop word

removal, punctuation removal, and stemming are pre-

processed.

Segmentation: Sentences from bug reports are parsed using

delimiters. The sentences that were retrieved are then

sorted according to the reported bug.

Tokenization: Segmenting sentences into meaningful

words, symbols, and phrases.

Stopwords are deleted from textual material without

semantic information in this step.

Punctuation and special characters like questioning and

exclamation are eliminated.

Stemming removes suffixes and prefixes to return words

to their roots. Presentation becomes "present."

After these stages, text data becomes a Document term

matrix (DTM). It shows a document's phrase frequency.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 103

Figure 1: Proposed Process Flow Diagram

B. Rapid Automatic Keyword Extraction (Rake)

Rake can pull keywords out of text regardless of the

domain. It breaks down texts into potential keywords,

which are word strings that describe the text's subject

matter. By analysing these content words' co-occurrence in

candidate keywords, it extracts them. Rake divides text

into words for keyword extraction. Then, the phrases are

separated from one another by using stop words and phrase

delimiters. The potential keywords are evenly spaced

throughout the text. The frequency of individual content

words within a potential keyword is displayed using a word

co-occurrence matrix. Words that are up for consideration

as part of a text are called "candidate words." Each

keyword is scored after identification. Each candidate

keyword's score is the sum of its content words [30, 31].

This is how keywords are scored:

 The freq value of a given textual document is first used

to calculate the freq value of each content word.

 After the frequency calculation is complete, the value

denoted by deg is the word's degree. To quantify, we

count how many times the content word appears in

potential keywords.

 Finally, the ratio of a word's degree to its frequency is

calculated and is shown as.

Here, using the description of bug ID HDFS-7707, we can

see how the scores of candidate keywords are calculated

(below) and in Table 1.

The frequency of edits is greater than that of corruption,

and the degree of edits is greater than that of corruption,

but the degree of corruption to the frequency of edits is

greater than the degree of edits to the frequency of edits

(edit).

Therefore, a fast automatic keyword extraction method is

used to choose commonly used words and lengthier

candidate keywords. RAKE is superior to tf-idf, text rank,

ngram with tag, and other keyword extraction methods in

terms of accuracy and recall. [30], [31].

C. Fuzzy Clustering

Unsupervised machine learning clusters data. Data points

are clustered by distance or similarity. Hard and soft

(fuzzy) clustering are the main methods. Hard clustering

assigns one value to each data point, 0 or 1.

Each data point may belong to more than one cluster

depending on the results of the soft clustering method. In

the field of fuzzy clustering, the most well-known method

is called "fuzzy C-means" [32]. Fuzzy c-means reduces the

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 104

Euclidean distance between data points and cluster centers.

FCM randomly chooses cluster centres and assigns

membership values to each data point. It updates the

cluster centre and degree of membership after each

iteration using equation (4). (5).

The objective function, or the separation of the ith data

point from the jth cluster center, is minimised over the

course of a set number of iterations.

D. Hierarchical Clustering

Like other unsupervised clustering methods, hierarchical

clustering [36] groups similar data sets together. This

phenomenon can either bring people together or drive them

apart. Different from the bottom-up method of

agglomerative clustering, which assigns each data point to

its own cluster, the top-down method of divisive clustering

divides a larger cluster into several smaller, more

manageable clusters. This strategy uses agglomerative

hierarchical clustering. By doing so, the approach treats

each data point as its own cluster and calculates the

distance between them. Several neighbouring clusters are

combined into one larger cluster if their characteristics are

sufficiently similar. After each new cluster is generated, its

proximity to the others is calculated and combined until a

single cluster is formed. Hierarchical clustering yields a

tree-like structure called a dendogram, which documents

numerous sequences of mergers. Furthermore, a wide

variety of approaches are used to calculate the closeness or

similarity of two clusters. In this paper, we use a linking

strategy that is statistically average. Every single point in

one cluster is measured against every single point in

another cluster to determine their average distance. To

determine this value, we use the equation Where, DiE C1

and DjE C2 [36].

IV. METHODOLOGY

Research concepts are defined here. Section IV includes

the pseudocode of the proposed method and then the

framework and its modules.

This method centres on four overarching ideas:

 Detailed coverage of the primary topic area.

 Ratio of compressed data to the uncompressed source.

 To reorder the summary so that the most important and

relevant information appears first.

 Spread out data sets with as little overlap as possible.

A. Corpus Creation and Text Pre-Processing

The APBRC has received 21 bug reports concerning

Apache. A bug report is parsed for one-liners, detailed

descriptions, and comments, then the sentences are

extracted and organised into a corpus. Tokenization,

stopword elimination, and stemming pre-process the

sentences. DTM construction follows pre-processing. "tm"

and "NLP" R packages implement the process.

B. Feature Extraction

Features are taken from preprocessed text. Everything of

interest in the text is taken out. All features of the text exist

at the word or sentence level. Various combinations of text

features have been extracted to improve bug report

relevancy and coverage. Explained are recommended

approach features.

V. KEYWORD FEATURES

Extractive summaries use sentences. To choose important

sentences, extract important words/keywords. You can use

one of two techniques to extract keywords:

Prevalence of Terms in Section 1.1 Documentation

Frequency, Inverse (Tf-Idf) Each word's term frequency

and inverse document frequency in a given document are

computed.

1.2 A Fully Automated, Rapid Extraction Procedure

(RAKE)

RAKE may pull keywords from documents. It uses

commas and other delimiters to separate phrases. To

determine which words and phrases within a text are most

relevant, it uses a frequency and co-occurrence analysis.

The total score for a keyword phrase is the average score

of its constituent content words. Section III illustrates

scoring (B).

A. Sentence Level Features

Once sentences containing the most relevant keywords

have been selected, the attributes of those sentences can be

analyzed. Some characteristics of complete sentences are

listed below.

2.1 Sentence position: It stipulates that summary sentences

should always include document leading sentences.

Calculated:

2.2 Sentence Length: Summaries should include both short

and long sentences, but longer ones are more crucial.

Calculated:

B. Fuzzy C-Means

Fuzzy C-means extracts sentences. Sentence selection is

shown below.

 First, the sentences in the dataset are clustered.

 Clustering can only be used after the optimum number

of clusters has been determined. This method employs

four distinct techniques: Gap Statistics (GSS), K-means,

Within sum of squares (WSS), and Silhouette. The best

number of clusters is chosen if it is found to be optimal

by at least two of the techniques [37].

 Fuzzy C-means clustering is used to determine the

optimal number of clusters. The extent to which a given

sentence fits into each category can be measured.

 Sentences from each cluster are culled to provide a

summary; those with a higher degree of membership

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 105

(DOM) or proximity to the cluster centroids are

preferred.

 A summary that does justice to the source material and

its context will use at least two and no more than four

sentences from each cluster.

Figure 2: Analyzing and contrasting several algorithms on

the BRC corpus

C. Rule Engine

A well-designed set of rules is essential for producing a

summary that is both exhaustive and comprehensible. All

rules were manually created by domain experts. All rules

prioritise features. Notations include:

 Degree of Membership – D.O.M

 Threshold Value – �

 Length of a sentence – L(Si)

Here are the parameters that were set up:

 In the event that the D.O.M. is greater than for each

cluster,

 The condition is met if the keyword score is lower than

6.

 For two or more keywords, IF (Keyword(score)1)

THEN

 If (function() exists) and (bugId exists), then

 If (Keyword(score) 1) AND (L(Si))

These rules determine sentence selection for an extractive

summary. Summary sentences are taken from the source

document. Bug report compression is 20%.

D. Hierarchal Clustering

The bug report extraction summary is processed to

eliminate repetition and re-rank sentences. Hierarchical

clustering removes redundancy and re-ranks the summary.

Dendograms show clusters in average connecting.

Dendograms show phrase hierarchies as tree-like graphs.

In a tree-like structure, sentence height indicates relevance.

Top sentences are the shorter ones because they are more

important. Selecting one sentence among similar-height

sentences eliminates repetition.

Thus, hierarchical clustering rearranges summary

sentences. Redundant summary sentences were

eliminated. Reranking sentences shows that the original

document's less important sentences are more relevant.

Hierarchical grouping produces a clearer, more relevant

summary. This brief summary will assist developers and

contributors understand the original problem report.

Section V illustrates the recommended methodology using

Apache project HDFS-13112 bug report (E).

This is the initial step to selecting sentences for optimal

clusters. Four methods—GSS, K-means, WSS, and

silhouette—compute clusters. Fig 6 shows the graphs.

Table 1: Score computation of various content words

VI. RESULTS AND ANALYSIS

RQ1 compares the suggested bug report summarising

methodology to supervised and unsupervised methods.

Table and bar graphs in fig 2 show the experimental

outcomes for four evaluation measures.

The novel strategy routinely outperforms comparable

methods, as seen above. Thus, it may summarise bug

reports better, as seen in figure 3 to 6.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 106

Figure 3: Accuracy and time taken for training

Figure 4: Accuracy

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 107

Figure 5: Precision, Recall, F-Score, and Pyramid Precision on The Apbrc and Brc Corpora, among other Metrics

Figure 6: Computation of Optimum Number of Clusters

VII. CONCLUSION

In this work, we introduce an unsupervised method for

automatically summarising software bug reports using

keywords and full sentences. Two feature extraction

strategies are employed to overcome literature's corpus-

oriented and document-oriented drawbacks: Quickly and

automatically extract relevant keywords by inverting the

frequency with which they appear in documents. RAKE is

unsupervised and works across languages and domains.

Sentence clusters from bug reports are extracted. Optimal

clustering is determined by K-means, GSS, Silhouette, and

WSS. Words with high membership value are chosen from

each cluster using fuzzy c-means clustering to handle

ambiguous information in bug reports. Rule-based method

combines keyword and sentence elements into an unified

summary. The resulting summary may contain a single

instructive sentence or several sentences with comparable

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 108

meaning. Hierarchical clustering reduces redundancy and

re-ranks summary phrases. The bug report is compressed

20%. It summarises bug reports. Due to the limited

availability of training data outside of the BRC, an

unsupervised learning approach is necessary to generate

useful summaries from any bug report corpus. Fuzzy c-

means is used to make predictions with less room for error

and more information. The problem report is parsed by

fuzzy C-means clustering to find the sentences that best

describe each cluster.

The proposed unsupervised method can be tried out on any

dataset to generate a short but complete summary without

the use of training data. The method is tested on the

APBRC and BRC corpora. The proposed method is

contrasted with both supervised (BRC and LRCA) and

unsupervised (MMR, Centroid, DivRank, Grasshopper,

Hurried) alternatives. Recall, F-score, pyramid precision,

and precision are all improved by 34.3%, 25.77%, 12.77%,

24.23 %, 16.83 %, and 6.88%, respectively, compared to

the results obtained by using BRC and LRCA. The F-score

indicates a productivity increase of 25.77% and a growth

of 16.83% showon in Fig 3 and fig 4. Methods that don't

require human intervention have been enhanced. The mean

values of precision, recall, f-score, and pyramid precision

for the APBRC corpus are 78.22 percent, 82.1 eight

percent, 80. one percent, and 81.6 six percent, respectively.

As a bug summarying method, automation is superior.

Future work will involve evaluating different clustering

algorithms. There are a variety of metrics that can be used

to evaluate the success of the proposed approach. In the

field of literature, an evaluation method known as ROUGE

(Recall-Oriented Understudy for Gisting Evaluation) is

used to assess works based on their recall. Inaccurate bug

report evaluations have been made. It could be used in

upcoming bug reports.

REFERENCES

[1] K. Zechner, "Automatic summarization of open-domain

multiparty dialogues in diverse genres", Comput.

Linguistics, vol. 28, pp. 447-485, Dec. 2002.

[2] L. Zhou, E. Hovy and M. Rey, "A Web-trained extraction

summarization system", Proc. HLT-NAACL Conf., pp. 205-

211, May 2003.

[3] X. Zhu and G. Penn, "Summarization of spontaneous

conversations", Proc. 9th Int. Conf. Spoken Lang. Process.,

pp. 1531-1534, 2006.

[4] G. Murray and G. Carenini, "Summarizing spoken and

written conversations", Proc. Conf. Empirical Methods

Natural Lang. Process. EMNLP, pp. 773-782, Oct. 2008.

[5] O. Rambow and J. Chen, "Summarizing email threads",

2004.

[6] S. Wan and K. McKeown, "Generating overview summaries

of ongoing email thread discussions", Proc. 20th Int. Conf.

Comput. Linguistics COLING, pp. 549, 2004.

[7] X. Xia, D. Lo, E. Shihab and X. Wang, "Automated bug

report field reassignment and refinement prediction", IEEE

Trans. Rel., vol. 65, no. 3, pp. 1094-1113, Sep. 2016.

[8] E. Hassan and T. Xie, "Software intelligence: The future of

mining software engineering data", Proc. FSE/SDP

workshop Future Softw. Eng. Res. FoSER, pp. 161-165,

2010.

[9] T. Xie, S. Thummalapenta, D. Lo and C. Liu, "Data mining

for software engineering", Computer, vol. 42, no. 8, pp. 55-

62, Aug. 2009.

[10] T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo and C. Sun,

"Duplicate bug report detection with a combination of

information retrieval and topic modeling", Proc. 27th

IEEE/ACM Int. Conf. Automated Softw. Eng. ASE, pp. 70-

79, 2012.

[11] Sun, D. Lo, X. Wang, J. Jiang and S.-C. Khoo, "A

discriminative model approach for accurate duplicate bug

report retrieval", Proc. 32nd ACM/IEEE Int. Conf. Softw.

Eng. ICSE, pp. 45-54, 2010.

[12] H. Mei and L. Zhang, "Can big data bring a breakthrough

for software automation?", Sci. China Inf. Sci., vol. 61, no.

5, pp. 1-3, May 2018.

[13] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen and

X. Wang, "Improving automated bug triaging with

specialized topic model", IEEE Trans. Softw. Eng., vol. 43,

no. 3, pp. 272-297, Mar. 2017.

[14] T. Zhang, G. Yang, B. Lee and E. K. Lua, "A novel

developer ranking algorithm for automatic bug triage using

topic model and developer relations", Proc. 21st Asia–

Pacific Softw. Eng. Conf., pp. 246-253, Dec. 2014.

[15] J. Xuan, H. Jiang, H. Zhang and Z. Ren, "Developer

recommendation on bug commenting: A ranking approach

for the developer crowd", Sci. China Inf. Sci., vol. 60, Jul.

2017.

[16] M. Rush, S. Chopra and J. Weston, "A neural attention

model for abstractive sentence summarization", Proc. Conf.

Empirical Methods Natural Lang. Process., pp. 379-389,

2015.

[17] S. Chopra, M. Auli and A. M. Rush, "Abstractive sentence

summarization with attentive recurrent neural networks",

Proc. Conf. North Amer. Chapter Assoc. Comput.

Linguistics Hum. Lang. Technol., pp. 93-98, 2016.

[18] M. Mohd, R. Jan and M. Shah, "Text document

summarization using word embedding", Expert Syst. Appl.,

vol. 143, Apr. 2020.

[19] S. Rastkar, G. C. Murphy and G. Murray, "Automatic

summarization of bug reports", IEEE Trans. Softw. Eng.,

vol. 40, no. 4, pp. 366-380, Apr. 2014.

[20] H. Jiang, N. Nazar, J. Zhang, T. Zhang and Z. Ren, "PRST:

A PageRank-based summarization technique for

summarizing bug reports with duplicates", Int. J. Softw.

Eng. Knowl. Eng., vol. 27, no. 6, pp. 869-896, Aug. 2017.

[21] H. Jiang, X. Li, Z. Ren, J. Xuan and Z. Jin, "Toward better

summarizing bug reports with crowdsourcing elicited

attributes", IEEE Trans. Rel., vol. 68, no. 1, pp. 2-22, Mar.

2019.

[22] S. Mani, R. Catherine, V. S. Sinha and A. Dubey,

"AUSUM?: Approach for unsupervised bug report

summarization", Proc. ACM SIGSOFT 20th Int. Symp.

Found. Softw. Eng., pp. 1-11, Nov. 2012.

[23] R. Lotufo, Z. Malik and K. Czarnecki, "Modelling the

‘hurried’ bug report reading process to summarize bug

reports", Empirical Softw. Eng., vol. 20, no. 2, pp. 516-548,

Apr. 2015.

[24] K. Sparck Jones, "A statistical interpretation of term

specificity and its application in retrieval", J. Document.,

vol. 28, no. 1, pp. 11-21, Jan. 1972.

[25] G. Salton, A. Wong and C. S. Yang, "A vector space model

for automatic indexing", Commun. ACM, vol. 18, no. 11,

pp. 613-620, Nov. 1975.

[26] D. Engel, "Mining for Emerging Technologies Within Text

Streams and Documents", Proc. Int. Conf. Data Mining. Soc.

Ind. Appl. Math., pp. 1-18, Feb. 2009.

[27] S. Rose, D. Engel, N. Cramer and W. Cowley, "CO RI

automatic keyword extraction", Text Mining Appl. Theory,

vol. 1, pp. 1-20, 2010.

[28] D. Patel, S. Shah and H. Chhinkaniwala, "Fuzzy logic based

multi document summarization with improved sentence

scoring and redundancy removal technique", Expert Syst.

Appl., vol. 134, pp. 167-177, Nov. 2019.

[29] F. B. Goularte, S. M. Nassar, R. Fileto and H. Saggion, "A

text summarization method based on fuzzy rules and

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)

Innovative Research Publication 109

applicable to automated assessment", Expert Syst. Appl.,

vol. 115, pp. 264-275, Jan. 2019.

[30] Kaur and S. G. Jindal, "Bug report collection system

(BRCS)", Proc. 7th Int. Conf. Cloud Comput. Data Sci. Eng.

Confluence, pp. 697-701, Jan. 2017.

[31] S. Rose, D. Engel and N. Cramer, "Automatic keyword

extraction from individual documents", Text Mining Appl.

Theory, vol. 1, pp. 1-20, Mar. 2010.

[32] F. Lobo, "Fuzzy c-means algorithm Fuzzy c-means

algorithm".

[33] S. K. Lakshmanaprabu, K. Shankar, D. Gupta, A. Khanna,

J. J. P. C. Rodrigues, P. R. Pinheiro, et al., "Ranking analysis

for online customer reviews of products using opinion

mining with clustering", Complexity, vol. 2018, pp. 1-9,

Sep. 2018.

[34] A. Karami, A. Gangopadhyay, B. Zhou and H. Kharrazi,

"Fuzzy approach topic discovery in health and medical

corpora", Int. J. Fuzzy Syst., vol. 20, no. 4, pp. 1334-1345,

Apr. 2018.

[35] N. Statistical, S. Ncss and A. R. Reserved, "Fuzzy

clustering".

[36] N. Statistical, S. Ncss and A. R. Reserved, Hierarchical

clustering /dendrograms.

[37] C. Malika, N. Ghazzali, V. Boiteau and A. Niknafs,

"NbClust: An R package for determining the relevant

number of clusters in a data Set", . Stat. Softw., vol. 61, no.

6, pp. 1-36, 2014.

[38] V. K. Gupta and T. J. Siddiqui, "Multi-document

summarization using sentence clustering", Proc. 4th Int.

Conf. Intell. Human Comput. Interact. (IHCI), pp. 1-5, Dec.

2012.

