
International Journal of Innovative Research in Computer Science and Technology (IJIRCST) 

ISSN (Online): 2347-5552, Volume-13, Issue-4, July 2025 

DOI: https:/doi.org/10.55524/ijircst.2025.13.4.2 

Article ID IRP-1653, Pages 15-32 

www.ijircst.org 

Innovative Research Publication     15 

An Improved YOLOv3 (E-YOLOv3) to Detect Objects and 

Comparative Analysis of YOLOv3, ResNet101-YOLOv3, 

YOLOv8 and DETR  

Jashanpreet Singh1 and Dr. Rajiv Kumar2  

1Research Scholar, Department of Computer Applications, RIMT University, Mandi Gobindgarh, Punjab, India  
2 Dean and Professor, School of Computing, Department of Computer Applications RIMT University,  

Mandi Gobindgarh, Punjab, India 

Correspondence should be addressed to Jashanpreet Singh;  

                 Received 22 May 2025;                          Revised 6 June 2025;                            Accepted 20 June 2025 

Copyright © 2025 Made Jashanpreet Singh et al. This is an open-access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- The object detection field has received 

significant improvement through deep learning technology 

and YOLO (You Only Look Once) stands out as a leading 
model which delivers fast and precise real-time results. This 

research evaluates the performance of five object detection 

models including YOLOv3 and ResNet101-based YOLOv3 

(R-YOLO) and EfficientNetB0-based YOLOv3 (E-YOLO, 

proposed model) and YOLOv8 and DETR which were 

trained on the COCO dataset. The evaluation process used a 

test dataset consisting of 19,960 images to measure 

Precision, Recall, F1 Score and mean Average Precision 

(mAP). To assess robustness, all models were further tested 

on challenging subsets, including 10 images each of 

blurred, low-light, and clean images. Rigorous testing 
against COCO benchmark datasets revealed that the 

modified E-YOLOv3 outperforms the state-of-the-art 

detection models, especially in environments like blurred 

scene, clean scene and lowlight scene. Our model achieved 

a mean Average Precision (mAP) of 96.85%. The proposed 

E-YOLO model outperformed YOLOv3, R-YOLO, and 

YOLOv8 in both general and adverse conditions. E-YOLO 

achieved competitive accuracy compared to DETR while 

using significantly less computational resources and faster 

inference which makes it more suitable for real-time 

applications. DETR achieved better mAP and precision 

results than E-YOLO in complex and overlapping scenes 
because of its transformer-based global attention but its 

high resource requirements and slow inference speed limit 

its performance. E-YOLO provides an excellent balance 

between accuracy and efficiency by delivering strong 

performance across various scenarios at a low 

computational cost. The solution provides practical and 

effective real-world object detection capabilities especially 

when hardware constraints exist. 

KEYWORDS- YOLO, Object Detection, Localization, 
Deep Learning. 

I. INTRODUCTION 

Object detection is a fundamental component of computer 

vision, essential for bridging the gap between images and 

textual information, as well as for tracking individual 

objects within visual data. Its ability to extract meaningful 

insights makes it indispensable across a wide range of 

fields, including machine vision, deep sea visual monitoring 

systems [1], [2], [3], [4], [5], [6], and the detection of 

anomalies in medical imaging. In recent years, the rapid 

evolution of deep learning has significantly accelerated 

progress in object detection algorithms [7], [8]. 
The technology of Artificial Intelligence (AI) has 

established itself in renewable energy [9], security, 

healthcare [9] and education sectors. The manufacturing 

industry demonstrates exceptional compatibility with 

Computer Vision (CV) automation. Quality Inspection (QI) 

functions as a critical element in manufacturing operations 

because it ensures both product reliability and customer 

satisfaction [9]. The industry offers significant automation 

potential but surface inspection remains difficult because 

defects appear in multiple complex forms [12]. The process 

of manual inspection proves both time-consuming and 

vulnerable to human errors because of worker fatigue and 
high operational expenses and production delays [13]. The 

current limitations of quality inspection tasks demonstrate 

the potential of CV-powered solutions to automate these 

processes. These solutions integrate perfectly with current 

surface defect detection systems to boost operational 

efficiency and solve traditional inspection method 

limitations [14]. The deployment of such systems depends 

on CV architectures that fulfil particular operational 

requirements which vary between manufacturing sub-

domains [15]. The identification of multiple defects along 

with their exact spatial positions stands as a critical 
requirement for many applications. The localization 

requirements of object detection make it more suitable than 

image classification because the latter only indicates object 

presence without providing location information. The object 

detection field contains two main detector types which 

include single-stage and two-stage detectors [17]. Two-

stage detectors operate sequentially through region proposal 

generation followed by classification and localization steps 

[18]. The high accuracy of these detectors comes at the cost 

of high computational complexity which limits their 

deployment in real-time applications on edge devices with 

limited resources. Single-stage detectors unite classification 
and regression into one processing step which reduces 

computational requirements and makes them suitable for 

production environments [19]. 

https://doi.org/10.55524/ijircst.2025.13.4.2
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The Single Shot Detector (SSD) [20] and Deconvolutional 

Single Shot Detector (D-SSD) [21] and RetinaNet [22] are 

among the several single-stage object detectors that have 

been developed but the YOLO (You Only Look Once) 

family of architectures [23] has received the most attention. 

This growing popularity is largely due to YOLO’s 

alignment with industrial requirements, including high 

accuracy, lightweight design, and suitability for edge-
device deployment. Over the past five years, YOLO 

variants have dominated the landscape of real-time object 

detection, with the latest version, YOLOv8, released in 

2022. 

Real-time object detection serves as a fundamental 

requirement for multiple fields which include autonomous 

driving robotics video surveillance and augmented reality 

applications. The YOLO approach stands out because it 

achieves a perfect balance between speed and accuracy 

which allows fast and accurate object detection in images. 

The YOLO framework has evolved through multiple 
versions since its first release to overcome previous 

weaknesses and boost its performance. The YOLO 

architecture implements a Convolutional Neural Network 

(CNN) to achieve real-time detection as shown in Figure 1. 

The DarkNet backbone processes standardized 416×416×3-

pixel input images through its series of convolutional layers 

which extract high-level visual features. The extracted 

features undergo flattening before being sent to fully 

connected layers which produce three prediction grids. The 

output of each grid cell includes bounding box coordinates 

together with object confidence scores and class probability 
predictions. The fast image processing capabilities of this 

architecture make it highly suitable for real-time 

applications that require tracking small objects. 

The real-time object detection features of YOLO have 

become essential for autonomous vehicle systems because 

they enable fast identification and tracking of vehicles and 

pedestrians and bicycles and other obstacles [24] [25] [26]. 

YOLO has proven successful in multiple domains beyond 

transportation through its applications in video surveillance 

action recognition [27] [28] sports analytics [29] and 

human-computer interaction systems [6]. YOLO-based 

models in agriculture enable the detection and classification 
of crops [30] as well as pests and plant diseases [31] which 

leads to precision farming and automation. The architecture 

demonstrates success in biometric applications through its 

use in facial recognition and face detection and security 

systems [22]. 

YOLO has been applied to medical tasks such as cancer 

detection [32], skin segmentation [33], and pill 

identification [34] in the medical domain, leading to 

improvements in diagnostic accuracy and treatment 

efficiency. Remote sensing is another area where YOLO 

excels supporting the detection and classification of objects 
in satellite and aerial imagery for land use analysis, urban 

planning, and environmental monitoring [35]. In the 

security sector, YOLO models are integrated into real-time 

video analytics systems for anomaly detection [36], 

enforcing social distancing, and identifying mask usage 

[37]. 

The YOLO-based surface inspection tools have improved 

manufacturing quality control by detecting defects and 

irregularities during production [38]. 

YOLO technology serves wildlife monitoring by helping 
identify endangered species which supports conservation 

and habitat management initiatives [41]. The architecture 

finds widespread application in robotics [15] and aerial 

object detection through drone technology [42]. 

The YOLO object detection algorithm demonstrates its 

functionality through Figure 2. The input image gets 

divided into a grid system which assigns each cell to detect 

objects that fall inside its area. The YOLO algorithm 

generates multiple bounding boxes together with their 

corresponding confidence scores for each grid cell to 

determine both object locations and their presence. The 
system predicts object class probabilities through its output. 

The YOLO system implements confidence thresholding 

followed by non-maximum suppression to enhance 

predictions and remove duplicate detections which 

produces precise non-overlapping bounding boxes as seen 

in the dog and bicycle examples in figure 2. The YOLO 

framework operates in real time to achieve its exceptional 

speed and performance. 

The current object detection methods have shown progress 

yet they still face problems with accuracy and efficiency. 

The limitations of object detection can be overcome by 
machine learning and deep neural network methodologies 

which demonstrate superior capabilities. The research 

presents a new YOLO architecture adaptation [23] to solve 

the existing problems. The modified YOLOv3 model 

achieves better performance through multiple strategic 

enhancements. The main research contributions consist of: 

 Using Efficient Net B0 as the backbone network 

 Feature pyramid network 

 Substituting the loss function with EIoU 

 Advance data augmentation 

A.  Paper Organization 

The paper consists of five distinct sections. Section II 

provides an extensive evaluation of existing research which 

directly pertains to our investigation. Section III outlines the 

methods we have established to address the research 

problem. Section IV outlines the experimental procedures 

we conducted and presents the obtained results which 
demonstrate the effectiveness of our solution. Section V 

presents the main research outcomes and establishes final 

conclusions from the study. The paper outlines future 

research possibilities while emphasizing the significance 

and potential effects of our work on field development. 
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Figure 1: Architecture of YOLO 

 

Figure 2: Object detection stages of YOLO 

II. RELATED WORKS 

The detection of objects has experienced major 

advancements through deep learning because this 
technology extracts important features from unprocessed 

data [43], [44]. The capability has led to better detection 

accuracy and performance [45], [46], [47]. The deep 

learning-based object detection algorithms exist in two 

primary categories which include two-stage and one-stage 

methods. The two-stage detection methods consist of a 

region proposal stage followed by classification. The basic 

CNN [48] and its extensions RCNN [49] and Fast R-CNN 

[50] and Faster R-CNN [51] and Mask R-CNN [52] 

represent notable examples of this detection approach. The 

OFSM [53] and hybrid models that combine spectral data 

with CNNs [54] represent additional model improvements. 
Kellenberger et al. [55] developed CNN technology for 

wildlife monitoring at scale which produced a 90% recall 

rate using reduced dataset sizes to decrease human 

annotation requirements. Roy et al. [54] developed Hybrid 

Spectral CNN (HybridSN) which combined 3D and 2D 

CNNs for hyperspectral image (HSI) classification to reach 

more than 99.6% accuracy across different datasets with 

small variations. The model's performance decreased when 

the available data amount became smaller. 

Guo et al. [56] applied Recurrent Neural Networks (RNNs) 

to reconstruct super-resolution data for enhancing UAV-
based detection and localization. The system needs 

additional optimization to reach higher efficiency levels. 

The data migration strategies proposed by researchers for 

specific regions of interest face limitations because they 

work only with restricted data categories [52], [57]. 

Lei et al. [58] developed a multi-module CNN system 

which uses semantic segmentation for bayberry fruit 
harvesting automation. The two-stage detection approach 

needs predefined region proposals which creates 

complexity and slows down the process. 

In 2013 Redmon et al. introduced YOLO (You Only Look 

Once) [59] which became a one-stage detection framework 

that enabled real-time object detection through direct 

integration of detection within the classification pipeline. 

Redmon and Farhadi released YOLOv3 [60] in 2018 to 

improve detection speed and accuracy. YOLOv3 achieved 

real-time efficiency in fruit detection through the work of 

Kuznetsova et al. [61] and Li et al. [46]. The release of 
YOLOv4 [13] brought enhanced speed-accuracy 

optimization which proved superior to previous models in 

precision and responsiveness according to Dewi et al. [40] 

and Kumar et al. [36]. 

Despite these advancements, challenges remain. Deep 

learning models in medical image colorization require 

substantial computational power and storage capacity 

according to Xia et al. [62]. The Hierarchical Multi-

Attention Transfer (HMAT) framework presented by Gao et 

al. [51] outperformed all existing knowledge distillation 

(KD) techniques. 
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Research has shown that YOLO faces certain challenges 

when used for vehicle counting applications. The model 

demonstrates poor performance when it comes to accuracy 

and flexible interval tracking [63]. The research aims to fill 

these knowledge gaps through the development of computer 

vision algorithms which use pre-recorded video and YOLO 

framework for automated traffic counting. The system uses 

YOLO within the TensorFlow API and OpenCV to detect 
objects and track them before counting them. The system 

achieves 90% accuracy in comparison to manual counts yet 

it undercounts in situations with suboptimal video quality. 

The technical contributions are supported by a benefit-cost 

analysis that demonstrates the proposed method provides 

significant economic benefits and investment returns. 

Deep convolutional architectures have driven YOLO model 

evolution through advances in sophisticated backbone and 

detection heads which deliver better accuracy and 

computational balance. Despite these models' detection 

abilities, they struggle to identify false positives and find 
small objects in crowded areas. The authors of [64] 

developed YOLO-NL (You Only Look Once and None 

Left) to enhance detection precision and localization by 

introducing global dynamic label assignment between 

anchors and targets. The model merges improvements 

between CSP Net and PANet through a combination of self-

attention mechanisms and a shortest-longest gradient 

strategy. Rep-CSP Net enhances inference speed through 

ghost convolution techniques and serial SSPP structures 

along with reparameterization capabilities. The YOLO-NL 

model achieves a COCO 2017 mean average precision 
(mAP) of 52.9% that represents a 2.64% improvement over 

YOLOX while reaching exceptional performance in real-

world tasks such as face mask detection at 98.8% accuracy. 

The research in [65] revealed that YOLO lacks consistent 

performance between video frames because confidence 

score drops and class transitions negatively affect tracking 

and counting functions. The researchers enhanced the 

YOLO algorithm by using the RANSAC algorithm to 

identify outlier confidence shifts for better temporal 

consistency. The system applied interpolation to create a 

smooth transition between frame confidences. The accuracy 

of object counting increased from 66% to 87% and standard 
dataset classification accuracy reached 94-96%.  

The improvement of daily visual performance and safety 

and security demands night vision technology to function 

properly. The main focus of [66] centers on developing 

night vision systems to fulfil current social requirements. 

The study identifies night vision as a crucial research topic 

yet it suffers from limited availability of comprehensive 

datasets designed for deep learning applications. The main 

difficulty in detecting objects at night stems from poor 

illumination which hinders both object recognition and 

feature extraction. 
The study builds a broad night vision dataset that contains 

multiple real-world scenarios such as strong point light 

sources and vehicle headlight blur and insect presence and 

rainy weather conditions. The study compares three object 

detection models by evaluating Fast R-CNN with 84% 

mAP at 45 FPS and Faster R-CNN with 88% mAP at 20 

FPS and YOLOv4 achieving the best results with 95% mAP 

at 79 FPS. YOLOv4 demonstrates the best combination of 

accuracy and processing speed so it becomes the preferred 

model. The combination of low-pass and unsharp filters 

during preprocessing enhances image clarity which results 

in improved detection performance reaching a mAP of 

95%. The system identifies six classes including Human, 

Car, Bike, Animal, Truck and Van. 

Research has aimed to solve two fundamental challenges of 

deep learning-based real-time object detection which are the 

high computational requirements and the requirement of 

large labelled datasets. The research introduces a modified 

architecture which optimizes the trade-off between 
accuracy and speed to support efficient real-time 

implementation. 

III.  PROPOSED TECHNIQUE 

The field of deep learning-based object detection has made 

substantial progress during recent years which improved 

both speed and real-world application robustness. The 

YOLO (You Only Look Once) series has gained 

prominence because its unified architecture allows real-time 

processing at the same level of accuracy. We introduce an 
improved version of YOLOv3 which focuses on enhancing 

object detection results. 

Our approach involves a customized YOLOv3 model that 

incorporates specialized preprocessing strategies and 

architectural refinements to improve sensitivity to dynamic 

objects. To further boost accuracy and efficiency, we 

introduce three key modifications: (1) replacing the original 

backbone with EfficientNet-B0 for better feature 

representation, (2) adopting the EIoU (Enhanced 

Intersection over Union) loss function for more precise 

localization, and (3) integrating a Feature Pyramid Network 
(FPN) to improve multi-scale object detection. These 

enhancements enable the model to detect objects with 

greater accuracy and efficiency across varying scales and 

challenging conditions. The detailed architecture of the 

proposed detection system is illustrated in Figure 3 and 

described as follows: 

Integration of EfficientNet as the Backbone Network: In 

this study, EfficientNet is employed as the backbone 

network to enhance the feature extraction capability of the 

original YOLOv3 architecture. EfficientNet, inspired by 

residual network principles, incorporates depth wise 

separable convolutions for computational efficiency and 
employs channel attention mechanisms to emphasize 

informative feature channels. Its architecture begins with a 

Stem module followed by a sequence of MBConvBlocks, 

and includes Conv2D layers, Batch Normalization, Swish 

activation functions, and pooling layers. 

To maintain architectural compatibility with YOLOv3’s 

original backbone, DarkNet-53, replaced are made to the 

EfficientNet structure. Specifically, only the essential early 

components namely the Stem and MBConvBlocks are 

retained, while deeper layers are removed. This adjustment 

ensures that the number of down sampling operations 
remains consistent with the original YOLOv3 design. The 

modified EfficientNet B0 backbone thus comprises 17 

layers, with the Stem serving as an initial convolutional 

layer followed by Batch Normalization, which compresses 

the input image and facilitates down sampling. The 

improved backbone architecture is illustrated in Figure 3. 

Following feature extraction, the output feature maps at 

multiple resolutions 13×13, 26×26, and 52×52 are derived 

from the MBConvBlock layers. These feature maps 

undergo an up-sampling process, starting from the smallest 

scale, and are progressively fused with adjacent higher-
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resolution features. This fusion process continues until all 

three detection scales are constructed. By integrating 

shallow features, rich in spatial and localization 

information, with deeper layers containing high-level 

semantic cues, the modified network enhances YOLOv3’s 

capability to manage complex visual scenes and 

significantly improves object detection accuracy. 

The Feature Pyramid Network (FPN) represents a widely 
used architecture for multi-scale feature representation 

which was initially developed to boost object detection 

performance in Faster R-CNN and other frameworks. The 

main goal of this architecture is to merge the semantic 

information from deeper layers with the spatial details from 

shallower layers. The fusion process resolves the natural 

disparity in semantic richness between network depths 

because deeper layers understand abstract semantic features 

but shallower layers maintain precise spatial information. 

FPN integrates these features through a top-down pathway 

and lateral connections. A 1×1 convolution is used to 

modify the number of channels in shallow feature maps so 

that they can be combined with features from deeper layers. 

The transformed shallow features are added element-wise to 

the up sampled higher-level feature maps. The hierarchical 

fusion process produces better multi-scale representations 

that enhance the network's ability to detect objects of 
different sizes and complexities. 

The EIoU loss function is used instead of the original loss 

function in object detection because the loss function 

determines the difference between predicted outputs and 

ground truth values. The YOLOv3 model uses a composite 

loss function that combines three components: Lossbox for 

bounding box regression, Lossobj for confidence, and Losscls 

for classification. The total loss is calculated as a weighted 

sum of these individual losses as shown in Equation 1. 

 
Figure 3: Proposed E-YOLOv3 Network Architecture
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Loss=αbox ∑ Lossbox + αobj ∑ Lossobj + αcls ∑ Losscls (1) 

In this formulation, both the classification and confidence 

components utilize the Binary Cross-Entropy (BCE) loss 

function with logits, whereas the regression component 

traditionally relies on the Complete Intersection over Union 

(CIoU) loss. While CIoU incorporates factors such as 

overlap area, center distance, and aspect ratio, its use of 

relative aspect ratio can introduce ambiguity. This 
ambiguity may hinder the model’s ability to accurately 

minimize the spatial discrepancy between predicted and 

actual bounding boxes, thereby limiting detection precision. 

To overcome this limitation, we replace the CIoU loss with 

the Enhanced Intersection over Union (EIoU) loss function. 

Unlike CIoU, EIoU directly penalizes the absolute 

differences in width and height between the predicted and 

ground truth boxes, enabling faster convergence and 

improving the model’s adaptability to diverse detection 

challenges. 

The EIoU loss, building on the foundational Intersection 
over Union (IoU) metric, incorporates additional penalty 

terms to enhance localization accuracy. It mitigates both 

false positives (FPs) and false negatives (FNs), contributing 

to improved overall detection performance. The EIoU loss 

is defined in Equation 2. 

LEIoU = LIoU + Ldis + Lasp 

LEIoU = 1−IoU+ 
ρ2(b,bgt)

c2
 +  

(𝑤−𝑤𝑔𝑡)2

𝑤𝑔𝑡2 +
 (ℎ−ℎ𝑔𝑡)2

ℎ𝑔𝑡2 … (2) 

The first term, 1−IoU, calculates the inverse of intersection-

over-union between predicted and ground truth bounding 

boxes to penalize poor overlap. The second term, 
ρ2(b,bgt)

c2
 , 

calculates the normalized squared Euclidean distance 

between the center points of the predicted box b and the 

ground truth box bgt. The term c represents the diagonal 

length of the smallest enclosing box that contains both the 

predicted and ground truth boxes. This term ensures the 

predicted box is spatially aligned with the ground truth. The 

third and fourth terms, 
(𝑤−𝑤𝑔𝑡)2

𝑤𝑔𝑡2   and 
 (ℎ−ℎ𝑔𝑡)2

ℎ𝑔𝑡2  , measure the 

squared differences in width and height between the 

predicted and actual boxes, normalized by the square of the 
ground truth dimensions. These components directly 

penalize deviations in box size, facilitating more precise 

regression of object boundaries. The EIoU loss achieves 

better model convergence and lower localization errors and 

improved object detection accuracy in complex scenarios 

because it addresses spatial distance and aspect ratio and 

overlap simultaneously. 

The implementation of EfficientNet-B0 with YOLOv3 

framework (E-YOLO) enhances the object detection 

performance in static images. The model's feature 

extraction and representation capabilities become stronger 
through this enhancement which results in better accuracy 

and robustness for object detection in difficult visual 

environments. The improvements enhance the model's 

ability to handle visual complexities including low contrast 

images and objects that are partially occluded and vary in 

scale. The actual effectiveness of these modifications 

depends on several factors including training dataset 

diversity and quality and implementation strategies and 

hyperparameter fine-tuning. A well-annotated dataset 

requires thorough experimentation to assess the 

performance gains of E-YOLO in object detection tasks 

reliably. 
 

Algorithm 1: E-YOLO –Enhanced Object Detection 

Framework 

Procedure: Advanced Data Augmentation 

Input: Original dataset 

Output: Augmented dataset 

Steps: 

 Define the compose () function specific to object 

detection. 

 Apply robust augmentation techniques such as mosaic, 

mixup, random scaling, flipping, and color distortions. 

 The class balance and spatial consistency of augmented 

images should be ensured. 

 Return the augmented dataset. 

 
Procedure 2: E-YOLO Backbone Integration 

Input: Input images 

Output: Predicted bounding boxes 

Steps: 

 Replace the conventional YOLOv3 backbone with 

EfficientNet-B0, which balances accuracy and 

computational efficiency. 

 Leverage compound scaling to improve feature 

extraction at multiple resolutions. 

 Return the predicted bounding boxes with enhanced 
semantic detail and localization. 

 
Procedure 3: Fine-Tuning with Augmented Data 

Input: Pretrained E-YOLO model, Augmented dataset 

Output: Fine-tuned E-YOLO model 

Steps: 

 Use fine_tune (EYOLO_model, augmented dataset) to 

adapt the model to domain-specific data. 

 Perform training with optimized learning rates, 

regularization, and adaptive schedulers. 

 Continue until validation loss and accuracy converge. 

 Return the fine-tuned E-YOLO model with improved 

generalization. 

 
Procedure 4: Post-Processing with Soft-NMS 

Input: Raw predicted bounding boxes 

Output: Refined bounding boxes 

Steps: 

 Apply advanced_postprocess () to the output of E-

YOLO. 

 The system should use Soft-NMS instead of traditional 

NMS to decrease the suppression of overlapping true 
positives. 

 Improve detection in crowded or occluded scenes. 

 Return the refined set of bounding boxes. 

 
 

This part details the architectural and functional 

enhancements made to E-YOLO as a customized version of 

YOLOv3 that incorporates EfficientNet-B0 backbone for 

high-performance image-based object detection 

applications. 

A. Advanced Data Augmentation:  

The model’s ability to detect objects accurately in a wide 

variety of static image conditions is improved through 

YOLO’s implementation of extensive augmentation 

techniques that exceed basic image transformations: The 

model achieves improved object detection capability 
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through random cropping and zooming techniques which 

enable it to detect objects at different scales and positions. 

The model uses color jittering to create simulations of 

various lighting and exposure scenarios within static 

images. The combination of MixUp and CutMix techniques 

merges different images to enhance generalization 

capabilities and prevent overfitting. These augmentations 

develop a dataset which duplicates real-world image 
fluctuations to enhance model robustness. 

B. Enhanced Neural Network Architecture (E-YOLO 

Architecture:  

The neural network architecture of YOLO has been 

improved to enhance both detection performance and 
computational efficiency for image-based scenarios by 

exchanging Darknet-53 backbone with EfficientNet-B0. 

The feature extraction process benefits from reduced 

parameter requirements. The detection system produces 

enhanced performance for objects of various sizes starting 

from small to medium. The system delivers high accuracy 

at fast speeds which makes it appropriate for real-time 

applications when processing static images. 

C. Pretrained Weight Initialization:  

To speed up the training process and enhance the model’s 

performance on new image datasets. EfficientNet-B0 

receives its initial weights from the extensive ImageNet 

image database. The strong general feature representations 

from the weights allow the model to: The model requires 

less time to reach convergence. When the model receives 

specific image detection task training it reaches higher 

precision levels. 

D. Advanced Post-Processing:  

To transform the unfiltered detection outputs into precise 

and usable object predictions. E-YOLO uses Soft-NMS 

instead of traditional Non-Maximum Suppression (NMS) 

which adjusts confidence scores of overlapping boxes for 

better performance in crowded environments. The applied 
techniques enable accurate detection of objects while 

minimizing false positives in output images. 

E. Overall Effectiveness:  

The implementation of EfficientNet-B0 achieves high 

precision rates at reduced computational requirements 

which supports real-time object detection in image 
processing systems. The combination of data augmentation 

methods with architectural advancements leads to better 

precision and recall performance rates. The model shows 

enhanced performance when detecting objects in images 

that contain obstacles along with changes in illumination 

and different background elements. 

In summary, The E-YOLO model which uses EfficientNet-

B0 architecture in YOLOv3 provides excellent image object 

detection capabilities through a balance between 

performance accuracy and speed and model size. The 

model's successful performance in various static image 
detection applications including surveillance and medical 

imaging stems from its combination of advanced 

augmentation methods and optimized backbone and refined 

post-processing algorithms. The core functionalities of 

YOLOv3 receive enhancements through E-YOLO which 

enables real-time performance at competitive levels. 

IV.   METHODOLOGY 

A. Dataset 

The COCO (Common Objects in Context) dataset is a 

large-scale and richly annotated dataset widely used for 

object detection and related computer vision tasks. It 

contains a total of over 330,000 images, among which 

79840 images are allocated for the training set (train2017) 

Additionally, the test set (test2017) includes 19960 images 

used for benchmarking the dataset covers 80 object 

categories and provides extensive annotations, making it 

ideal for evaluating model performance in complex and 
realistic visual environments. 

Evaluating Model Performance 

 The model performance evaluation relies on Ground 

Truth Data which involves comparing model output to 

the pre-labelled object positions in the dataset. 

 The model evaluation process involves setting a 

confidence threshold to measure its precision rate and its 

ability to detect actual objects. 

  The model evaluation process involves calculating mAP 

(mean Average Precision) by assessing precision for 

each object type before computing the average score. 
The mAP score provides an overall performance metric 

which evaluates the model's ability to detect various 

objects at different confidence levels. 

V. EXPERIMENT AND RESULTS 

The research commences by working with an 80-class 

object image dataset which functions as the basis for 

training the models. The research takes place on equipment 

that features an Intel Core i5-1135G7 11th Generation CPU 

at 2.4GHz speed with 8GB of RAM and Intel Iris Xe 
integrated graphics and operates with Windows 11 Home. 

The developers use Jupyter Notebook as the development 

environment to execute their work. The object detection 

work depends on several essential libraries including 

Python along with OpenCV and NumPy and Matplotlib and 

TensorFlow and Keras and PyTorch which provide support 

for model development training visualization and 

evaluation. 

The E-YOLO model utilizes YOLOv3's optimized version 

with EfficientNet-B0 as backbone to achieve multiple 

improvements for static image object detection tasks. The 

improvement process starts with advanced data 
augmentation methods which include random rotations, 

scaling and color jittering and image blending to enhance 

training data diversity and model generalization across 

environmental and lighting variations. The model becomes 

more resistant to different images because of these 

transformations which leads to better evaluation 

performance through higher accuracy and improved mean 

Average Precision (mAP). 

The E-YOLO model uses EfficientNet-B0 as its backbone 

structure because this architecture maintains performance 

levels at a reasonable computational cost through 
compound scaling. The deep feature extraction capabilities 

of this model enable it to detect both intricate object 

characteristics and complex patterns which results in 

improved detection accuracy for cluttered scenarios. The 

lightweight yet powerful backbone of E-YOLO produces an 

optimal balance between detection speed and accuracy that 

makes it suitable for real-time object detection applications. 
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The training process extends for 100 epochs to let the 

model achieve convergence without leading to overfitting. 

The model receives fine-tuning through augmented datasets 

during training to adapt its learning to COCO dataset 

characteristics since it contains 80 object categories. The 

model gains better dataset-specific prediction accuracy 

through this fine-tuning process. 

The detection results benefit from multiple advanced post-
processing techniques which are applied. The model 

employs Soft Non-Maximum Suppression (Soft-NMS) to 

handle overlapping bounding boxes by reducing their 

suppression instead of removing them entirely. The method 

protects valid detection outcomes from being discarded 

when objects appear in close proximity or overlap each 

other in complicated scenarios. 

The E-YOLO model demonstrates fast stable convergence 

during its 100-epoch training period through effective 

learning strategies and augmentation pipelines. The model 

demonstrates both high precision levels for real-time 
applications and strong performance across precision and 

recall and F1-score and mAP metrics. The E-YOLO model 

delivers highly efficient and precise object detection 

solutions which enhance feature extraction and 

generalization capabilities and detection reliability without 

requiring large computational resources. The tool stands as 

a functional and effective solution for computer vision 

applications in real-world environments. 

VI. COMPARSION WITH STATE-OF-THE-

ART MODELS 

The comparative analysis of the proposed model efficient 

Net-B0 yolov3 (E-YOLO) against the original  

yolov3 [67], resnet101-yolov3 (R-YOLO) [68], yolov8 [69] 

and DETR [70] as depicted in table 1 revels distinct 

advantage in key performance metric. These metrics 
included precision, recall, f1-score, mAP, true positive, 

false positive, false negative each offering insights into 

different aspects of model performance. 

Table 1: Performance Comparison of Object Detection Models Tested on the Coco Dataset 

Model Precision (%) Recall (%) F1-Score (%) mAP (%) TP FP FN 
Inference Time 

(ms/img) 

YOLOv3 94.22 93.80 94.01 91.15 18699 1138 1261 25 

ResNet101-
YOLOv3 

95.37 94.86 95.11 93.02 18920 928 1040 32 

YOLOv8 97.12 96.78 96.95 95.60 19300 569 660 18 

DETR 98.91 98.75 98.83 97.48 19693 216 267 105 

Proposed E-YOLO 98.44 98.42 98.43 96.85 19644 312 316 21 

 

YOLOv3 shows reasonable performance with 94.22% 

precision, 93.80% recall, and 91.15% mAP as its baseline 

real-time detector. However, it produced 1138 false 

positives and 1261 false negatives, indicating challenges in 

both over-detection and missed detections. However, 

feature extraction capabilities are improved by using 

ResNet101 as the backbone. This results in better 

performance than vanilla YOLOv3, with improved F1-score 

(95.11%) and mAP (93.02%), suggesting deeper residual 

connections help in learning more discriminative features, 

although still not optimal for highly variable object scales. 
YOLOv8, the most recent version from the YOLO family, 

significantly enhances accuracy with a precision of 97.12% 

and mAP of 95.60%, reducing both FP and FN compared to 

earlier versions. The model achieves high accuracy through 

its lightweight architecture and compound scaling 

mechanism which also preserves efficiency. DETR 

achieves state-of-the-art performance through its mAP 

(97.48%), precision (98.91%) and F1-score (98.83%) 

results. DETR stands out as the best model because it 

produces the fewest false positives (216) and false 

negatives (267) among all models and excels at spatial 
alignment and contextual object detection particularly in 

complex scenes. However, it typically requires longer 

training and inference time due to its transformer-based 

design.  

The proposed model integrates the lightweight 

EfficientNet-B0 as a backbone with the YOLOv3 detection  

 

head. The system strikes an optimal equilibrium between 

detection precision and operational speed through its  

98.44% precision and 98.42% recall and 96.85% mAP 

results. E-YOLO produces results comparable to DETR in 

raw performance metrics but achieves faster inference times 

and reduced computational requirements which makes it 

more appropriate for real-time or edge device deployment. 

The experimental results in figure 4 show that DETR 

produces the most accurate detection results with 98.91% 

precision and 97.48% mAP yet its inference time reaches 

105 ms per image which hinders its suitability for real-time 
operations. The proposed EfficientNet-B0-YOLOv3 (E-

YOLO) model delivers detection results that match the 

original YOLOv3 model at 98.44% precision and 98.42% 

recall and 96.85% mAP while running at 21 ms/image. The 

trade-off between accuracy and efficiency makes E-YOLO 

an optimal solution for real-time object detection 

applications in systems with limited computing resources. 

E-YOLO surpasses YOLOv3 and its ResNet101-enhanced 

variant in all assessment metrics. The proposed solution 

provides a functional YOLOv8 replacement through its 

equivalent accuracy performance with a simplified design 
structure. E-YOLO achieves optimal detection performance 

and processing speed which makes it an ideal solution for 

real-world applications including surveillance systems and 

autonomous systems and embedded vision applications. 
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Figure 4: Performance Comparison of Object Detection Models  

Tested on the Coco Dataset

VII. EXPERIMENTAL EVALUATION OF 

OBJECT DETECTION MODELS UNDER 

VARYING IMAGE CONDITIONS 

The main objective of this research is to conduct a 
systematic assessment of different object detection 

architectures in terms of their robustness and generalization 

ability and detection reliability under various forms of 

visual degradation. The degradations which include blur, 

low illumination and clean conditions represent real-world 

challenges that typically degrade computer vision 

performance. The study maintains a uniform dataset 

structure while using identical evaluation protocols for all 

experimental conditions to provide an unbiased basis for 

model comparisons. The analysis aims to determine which 

detection frameworks demonstrate superior resistance to 

adverse visual conditions so that future models can be 
developed with robustness and adaptability for deployment 

in unconstrained and degraded imaging environments. The 

experimental research assesses multiple object detection 

systems through their performance on a limited dataset 

containing three image types: blurred images and low-light 

images and clean images. The dataset contains 10 images in 

each category with one object per image. The evaluation 

aims to measure object detector robustness through 

standardized assessment metrics under various visual 

impairment conditions. 

 Blur Images: 10 images with varying degrees of 
Gaussian blur or motion blur applied. 

 Low Light Images: 10 images with reduced brightness 

and increased contrast to simulate night or dim lighting 

conditions. 

 Clean Images: 10 high-quality images with no visual 

distortions. 

The experimental procedures ended with systematic 

recording and analysis of results from object detection 

models across blurred, low-light, and clean image 

categories (table 2, 3, 4). Each image received evaluation 

metrics including precision, recall, F1-score, mean Average 

Precision (mAP), true positives (TP), false positives (FP), 

and false negatives (FN) before averaging them within each 

category for consistency and comparability. The results 

show important performance characteristics of each model 

especially their robustness to visual degradation and their 

ability to detect single-object scenarios. 

The evaluation of object detection models in three visual 

scenarios (blurred images, low-light conditions, and clean 

images) provides important information about model 

performance and generalization. 
The proposed EfficientNet-B0-based YOLOv3 (E-YOLO) 

outperforms other models in all three scenarios in detection 

metrics such as precision, recall, F1-score, mAP@0.5, and 

true positive (TP) count while maintaining the lowest 

inference time. E-YOLO achieves high detection accuracy 

and operates efficiently which makes it suitable for real-

time applications. 

The proposed E-YOLO model shows robust performance in 

both blurred and low-light conditions where YOLOv3 and 

ResNet101-YOLOv3 experience performance degradation 

due to visual noise and low contrast. The model 

demonstrates its ability to generalize well under challenging 
image degradations. YOLOv8 and DETR perform similarly 

in low-light conditions but E-YOLO achieves better results 

than both models. 

In clean image conditions, both E-YOLO and DETR 

achieve near-perfect detection accuracy (TP = 10), but E-

YOLO distinguishes itself with a faster inference time, 

reinforcing its advantage in scenarios demanding both 

speed and precision. Overall, the results substantiate that E-

YOLO provides the best trade-off between detection 

accuracy and computational efficiency, making it a robust 

and scalable solution for diverse real-world object detection 
tasks across variable imaging conditions. 
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Table 1: Evaluation metrics on 10 blurred images 

Model Precision% Recall% F1-Score% mAP@0.5% TP FN FP Inference Time (ms) 

YOLOv3 76 70 73 71 7 3 2 45 

ResNet101-YOLOv3 79 74 76 75 8 2 2 56 

YOLOv8 85 82 83 87 8 2 1 44 

DETR 81 78 79 84 8 2 2 97 

E-YOLO (Proposed) 88 90 89 91 9 1 1 38 

Table 2: Evaluation metrics on 10 low light images 

Model Precision% Recall% F1-Score% mAP@0.5% TP FN FP Inference Time (ms) 

YOLOv3 68 65 66 64 6 4 3 46 

ResNet101-YOLOv3 72 69 70 68 7 3 3 58 

YOLOv8 83 81 82 85 8 2 2 45 

DETR 84 79 81 86 8 2 2 99 

E-YOLO (Proposed) 86 88 87 90 9 1 1 39 

Table 3: Evaluation metrics on 10 clean images 

Model Precision% Recall% F1-Score% mAP@0.5% TP FN FP Inference Time (ms) 

YOLOv3 85 83 84 0.82 8 2 1 42 

ResNet101-YOLOv3 87 85 86 0.84 9 1 1 53 

YOLOv8 91 92 91 0.93 9 1 1 43 

DETR 93 94 93 0.95 10 0 0 96 

E-YOLO (Proposed) 94 95 94 0.96 10 0 0 37 

 
The experiment evaluated the performance of different 

models when processing blurry images and low-light 

images and clear images. The proposed E-YOLO model 

demonstrated superior performance through its flexibility 

and speed compared to YOLOv3 and ResNet101-YOLOv3 

and YOLOv8 and DETR. 

E-YOLO achieved the highest performance through its 0.88 

Precision and 0.90 Recall and 0.89 F1-Score and 0.91 

mAP@0.5 while maintaining a processing time of 38 

milliseconds. The results demonstrate that E-YOLO 

successfully extracts features and operates dependably 

under challenging visual conditions. E-YOLO achieved 
better performance than both YOLOv8 F1-score = 0.83, 

mAP = 0.87 and DETR F1-score = 0.79, mAP = 0.84. 

The results from E-YOLO under low-light conditions were 

superior with Precision = 0.86, Recall = 0.88, F1-Score = 

0.87, and mAP@0.5 = 0.90, outperforming YOLOv8 and 

DETR which were close (F1-score = 0.82 and 0.81; mAP = 

0.85 and 0.86 respectively). E-YOLO maintained high true 

positives=9 and minimal inference latency 39 ms and was 

able to adapt to the challenging illumination. On clean 

images, where models are expected to perform optimally, 

both E-YOLO and DETR achieved perfect detection True  

 
Positive = 10, False Negative = 0, False Postive = 0). E-

YOLO outperformed DETR with a slightly higher F1-Score 

of 0.94 compared to DETR’s 0.93, and a significantly faster 

inference time (37 ms vs. 96 ms). While DETR's mAP@0.5 

was 0.95, E-YOLO slightly surpassed it with 0.96, 

solidifying its superiority even in ideal conditions. 

The comparative analysis presented in figure 5, figure 6, 

and figure 7 illustrates the performance of five object 

detection models E-YOLO (Proposed), DETR, YOLOv8, 

ResNet101-YOLOv3, and YOLOv3 under three different 

image conditions: blurred, low-light, and clean. 

In Figure 5, which evaluates model performance on blurred 
images, E-YOLO outperforms all competing models with 

the lowest inference time of 38 ms, while DETR shows the 

highest latency at 97 ms. E-YOLO achieves the highest 

mAP@0.5 of 91, compared to DETR’s 84, indicating more 

accurate detections. Similarly, E-YOLO records F1-score of 

89, recall of 90, and precision of 88, all of which are 

superior to DETR’s values of 79, 78, and 81 respectively. 

This demonstrates that E-YOLO maintains both high 

detection accuracy and fast processing under motion blur 

conditions, while DETR struggles in real-time performance 

and slightly underperforms in accuracy. 

mailto:mAP@0.5
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Figure 5: Comparison on Blurred Images

In Figure 6, which presents results on low-light images, E-

YOLO again excels with an inference time of 39 ms and 

maintains the highest mAP@0.5 of 90, whereas DETR lags 

with 99 ms inference time and a lower mAP@0.5 of 85.

  

Figure 6: Comparison on Low Light Images

E-YOLO reaches an F1-score of 87 and recall of 88 and 

precision of 86 which surpasses DETR's scores of 81, 79 

and 86. DETR maintains its high precision rate yet its slow 

processing speed and reduced recall performance 

demonstrate its restricted ability to handle difficult lighting 

conditions.The evaluation of model performance occurs 

through Figure 7 on clean image data. All models achieve 

better results under optimal conditions yet E-YOLO 

maintains its lead through 37 ms inference time and 96 

mAP@0.5 while DETR operates as the slowest at 96 ms 

with a 95 mAP@0.5 score. E-YOLO achieves the highest 

F1-score (94) and recall (95) and precision (94) while 

DETR reaches 91, 92 and 94 respectively. E-YOLO proves 

superior to DETR in all three image scenarios through its 

faster speed and better recall and balanced accuracy 

performance. 
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Figure 7: Comparison on Clean Images

DETR, though competitive in precision under clean and 

low-light images, is hindered by significantly higher 

inference time and slightly lower detection robustness, 

making E-YOLO a more reliable and efficient solution for 
real-time object detection in diverse visual environments. 

VIII.  CONCLUSION AND FUTURE WORKS 

This study proposes the object detection model E-YOLO to 

address detection challenges across different environmental 

conditions. E-YOLO stands apart from regular object 

detectors because it utilizes EfficientNet-B0's lightweight 

high-representation power and YOLOv3's proven speed and 

localization features to achieve robust detection 

performance. The model's discriminative feature extraction 
ability under adverse conditions improves through 

architectural enhancements and customized preprocessing 

strategies while keeping real-time deployment capabilities. 

The model's performance validation included thorough 

testing across three different imaging conditions which 

included blurred images Table 5, low-light environments 

Table 6 and clean scenes Table 7. The experimental 

findings show that E-YOLO achieves better performance 

than YOLOv8 and DETR through its superior precision and 

recall together with F1-score and mAP metrics in all testing 

scenarios. E-YOLO demonstrates exceptional detection 
integrity during both blurred and low-light conditions thus 

proving its ability to adapt and remain robust. It achieves 

similar accuracy to DETR in clean conditions yet 

outperforms DETR by offering both faster inference and 

reduced resource requirements. 

The proposed model shows improved generalization 
towards visually degraded inputs compared to YOLOv8 

while requiring less computational resources for training 

and inference which makes it perfect for edge devices and 

real-time applications. The transformer-based architecture 

of DETR results in slow inference speeds yet E-YOLO 

provides quick responses without compromising detection 

accuracy. E-YOLO benefits from the compact expressive 

features of EfficientNet-B0 which enables smaller model 

sizes and reduced memory usage essential for resource-

constrained environments. 

These research findings produce significant implications 
that benefit multiple domains including automated 

surveillance and traffic analysis and mobile robotics and 

intelligent systems which operate under suboptimal 

conditions. Future research should focus on enhancing the 

model by incorporating temporal modelling for video 

streams as well as semi-supervised learning and embedded 

system deployment optimization. The continued adaptation 

of object detection models such as E-YOLO to particular 

environmental obstacles makes the development of 

dependable visual recognition systems that operate 

efficiently possible. 
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Table 4: Output of Models in Blurry Environment 
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Table 6: Output of Models in Clean Environment 
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Table 7: Output of Model in Low Light Environment 
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