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ABSTRACT- Data exfiltration remains a critical 

cybersecurity threat, particularly in edge computing 

environments where vast amounts of sensitive information 

are processed and transmitted. Traditional security 

mechanisms often struggle to detect sophisticated data 

breaches due to their reliance on predefined rules and 

signatures. This study proposes a deep learning-based 

approach for real-time detection of data exfiltration, 
leveraging transformer, CNN, and RNN architectures to 

analyze network traffic patterns and identify malicious 

activities. The transformer-based model demonstrated 

superior performance, achieving a detection accuracy of 

96.3%, with lower false positive and false negative rates 

compared to CNN and RNN models. The proposed 

solution effectively minimizes alert fatigue by reducing 

false positives while ensuring high recall rates to detect 

unauthorized data transfers with minimal oversight. 

Additionally, the model's computational efficiency makes 

it well-suited for deployment in resource-constrained edge 

computing environments. Experimental results highlight 
the robustness of the approach against adversarial evasion 

techniques, emphasizing its potential for real-world 

cybersecurity applications. The study also explores the 

integration of continuous learning mechanisms and 

explainable AI to enhance model adaptability and 

interpretability. These findings suggest that deep learning-

based detection methods can significantly improve data 

security in edge computing, providing a scalable and 

effective solution to mitigate data exfiltration threats in 

dynamic and distributed environments. 

KEYWORDS- Data Exfiltration, Deep Learning, Edge 

Computing, Cybersecurity, Real-Time Detection 

I. INTRODUCTION 

Data exfiltration poses a significant security threat in 

modern computing environments, particularly in edge 

computing systems where data is processed closer to the 

source. With the rapid proliferation of Internet of Things 

(IoT) devices and distributed computing architectures, 
safeguarding sensitive data has become more challenging. 

Traditional security measures, including signature-based 

intrusion detection systems and heuristic methods, often 

struggle to detect sophisticated exfiltration attempts in real 

time due to their reliance on predefined attack patterns. 

Furthermore, edge computing introduces additional 

complexities, such as resource constraints, heterogeneous 

device networks, and limited centralized control, which 

make conventional cybersecurity approaches less 

effective. In this context, deep learning has emerged as a 

promising solution for real-time detection of data 

exfiltration in edge computing systems, offering the ability 

to analyze vast amounts of data, identify anomalous 

behavior, and adapt to evolving cyber threats. By 

leveraging deep learning models, security mechanisms can 

detect subtle deviations in network traffic, recognize 
previously unseen exfiltration techniques, and enhance the 

overall resilience of edge computing infrastructures 

against data breaches [1]. 

The integration of deep learning into edge security 

frameworks presents both opportunities and challenges. 

Unlike traditional rule-based approaches, deep learning 

models can learn complex patterns from historical data, 

enabling more accurate and adaptive threat detection. 

Techniques such as recurrent neural networks (RNNs), 

convolutional neural networks (CNNs), and transformers 

have demonstrated remarkable capabilities in processing 
sequential and high-dimensional data, making them 

suitable for network traffic analysis and anomaly 

detection. However, deploying deep learning models in 

edge environments requires careful optimization to 

accommodate computational limitations, reduce latency, 

and ensure energy efficiency. Unlike centralized cloud-

based solutions, where models can be trained on powerful 

hardware, edge-based detection systems must balance 

accuracy and efficiency to function effectively on 

resource-constrained devices. Model compression 

techniques, federated learning, and lightweight 

architectures play a crucial role in making deep learning 
viable for real-time data exfiltration detection in edge 

computing [2]. 

A key advantage of using deep learning for data 

exfiltration detection is its ability to identify threats in an 

automated manner without relying on manually crafted 

rules. Cyber attackers continuously evolve their strategies 

to bypass traditional security defenses, often using 

sophisticated techniques such as encrypted communication 

channels, covert timing channels, and polymorphic 

malware. Conventional security mechanisms struggle to 

keep up with these advancements, as signature-based 
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systems require frequent updates and heuristic approaches 

may generate high false-positive rates. Deep learning 

models, on the other hand, can generalize from large 

datasets, recognize deviations from normal behavior, and 

detect exfiltration attempts that do not match known attack 

signatures. By analyzing traffic flow patterns, protocol 

anomalies, and contextual information, deep learning-

based systems can flag suspicious activities that may 
indicate unauthorized data transfer. Moreover, real-time 

processing capabilities allow security teams to respond to 

potential threats promptly, minimizing the risk of data loss 

and ensuring compliance with data protection regulations 

[3]. 

One of the primary challenges in real-time data exfiltration 

detection is distinguishing between legitimate and 

malicious data transfers. In edge computing environments, 

various applications generate substantial amounts of data 

that need to be transmitted to centralized servers, cloud 

storage, or other devices. Distinguishing normal data 
exchange from exfiltration attempts requires sophisticated 

feature extraction and classification techniques. Deep 

learning models can be trained on vast amounts of labeled 

network traffic data to identify subtle variations that 

indicate malicious intent. Techniques such as autoencoders 

and generative adversarial networks (GANs) can be 

employed to learn the normal distribution of network 

traffic and detect deviations indicative of exfiltration. 

Additionally, hybrid models that combine supervised and 

unsupervised learning approaches can improve detection 

accuracy while reducing false positives. Real-time 
adaptation mechanisms, such as online learning and 

reinforcement learning, further enhance the system's 

ability to respond to emerging threats dynamically [4]. 

Another critical aspect of real-time data exfiltration 

detection in edge computing is ensuring privacy and 

security while processing sensitive information. Deep 

learning models require extensive training data, which 

may include confidential or personally identifiable 

information. Transmitting such data to centralized servers 

for model training and inference poses privacy risks and 

potential compliance challenges. Federated learning offers 

a privacy-preserving solution by enabling model training 
directly on edge devices without sharing raw data. By 

distributing the learning process across multiple devices, 

federated learning enhances privacy while maintaining the 

effectiveness of deep learning-based detection 

mechanisms. However, implementing federated learning 

in edge environments introduces additional challenges, 

such as communication overhead, model synchronization, 

and adversarial attacks targeting distributed learning 

frameworks. Addressing these challenges requires 

innovative techniques, such as differential privacy, secure 

multi-party computation, and homomorphic encryption, to 
ensure secure model training and inference [5]. 

The effectiveness of deep learning-based data exfiltration 

detection depends on the quality and diversity of training 

data. Generating representative datasets that capture 

various exfiltration techniques, network topologies, and 

attack scenarios is crucial for building robust detection 

models. Traditional datasets used for network intrusion 

detection may not fully represent modern edge computing 

environments, necessitating the creation of specialized 

datasets tailored to edge-based security challenges. 

Synthetic data generation techniques, such as data 

augmentation, adversarial training, and simulation-based 

approaches, can help enhance dataset diversity and 

improve model generalization. Furthermore, continuous 

model updates are essential to adapt to evolving cyber 

threats. Incremental learning and transfer learning 

approaches enable models to incorporate new attack 

patterns without requiring extensive retraining, reducing 

downtime and improving real-time detection capabilities 
[6]. 

Despite the promising potential of deep learning in 

detecting data exfiltration, several practical challenges 

must be addressed to achieve widespread adoption in edge 

computing environments. One major concern is the 

interpretability of deep learning models. Unlike traditional 

rule-based systems that provide clear explanations for 

detected threats, deep learning models operate as black 

boxes, making it difficult for security analysts to 

understand the reasoning behind their decisions. 

Explainable AI (XAI) techniques, such as attention 
mechanisms, feature attribution methods, and model 

visualization tools, can help enhance transparency and 

trust in deep learning-based security systems. 

Additionally, false positives and false negatives remain 

significant issues, as overly sensitive models may generate 

excessive alerts, leading to alert fatigue, while overly 

lenient models may fail to detect subtle exfiltration 

attempts. Fine-tuning model hyperparameters, 

incorporating domain knowledge, and integrating human-

in-the-loop approaches can help balance detection 

accuracy and practicality [7]. 
Scalability is another crucial factor in deploying deep 

learning-based data exfiltration detection across diverse 

edge computing environments. Edge networks vary in 

size, topology, and resource availability, requiring 

adaptable detection mechanisms that can scale efficiently. 

Cloud-edge hybrid architectures, where computationally 

intensive tasks are offloaded to the cloud while latency-

sensitive operations are performed at the edge, offer a 

potential solution. Edge AI accelerators, such as Tensor 

Processing Units (TPUs) and specialized deep learning 

chips, can further enhance real-time inference capabilities 

while minimizing energy consumption. Dynamic resource 
allocation strategies, edge orchestration frameworks, and 

intelligent load balancing techniques are essential for 

ensuring seamless integration of deep learning-based 

detection systems into large-scale edge networks [8]. 

In addition to technical challenges, regulatory and ethical 

considerations play a crucial role in the adoption of deep 

learning-based security solutions. Data protection laws, 

such as the General Data Protection Regulation (GDPR) 

and the California Consumer Privacy Act (CCPA), impose 

strict requirements on data collection, storage, and 

processing. Compliance with these regulations requires 
careful handling of network traffic data, ensuring that 

detection mechanisms do not infringe on user privacy. 

Ethical considerations, such as bias in deep learning 

models and the potential for adversarial manipulation, 

must also be addressed to prevent unintended 

consequences. Developing standardized evaluation 

benchmarks, conducting rigorous testing, and fostering 

collaboration between academia, industry, and regulatory 

bodies can help establish best practices for deploying deep 

learning-based data exfiltration detection in edge 

computing environments. 
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In conclusion, real-time detection of data exfiltration using 

deep learning in edge computing systems represents a 

significant advancement in cybersecurity. By leveraging 

deep learning’s ability to analyze complex network 

patterns, detect anomalies, and adapt to evolving threats, 

edge-based security frameworks can enhance data 

protection in distributed environments. However, 

challenges related to computational efficiency, privacy, 
model interpretability, scalability, and regulatory 

compliance must be carefully addressed to ensure the 

effectiveness and practicality of these solutions. Future 

research should focus on optimizing deep learning 

architectures for edge deployment, improving dataset 

quality, enhancing explainability, and integrating security 

mechanisms that align with evolving cyber threat 

landscapes. With continued advancements in artificial 

intelligence and edge computing technologies, deep 

learning-based data exfiltration detection has the potential 

to revolutionize cybersecurity and provide robust 
protection against data breaches in next-generation 

computing infrastructures. 

II. LITERATURE REVIEW 

In recent years, the integration of deep learning techniques 

into cybersecurity frameworks has garnered significant 

attention, particularly for the real-time detection of data 

exfiltration in edge computing systems. The period from 

2020 to 2025 has seen a surge in research focusing on 

leveraging artificial intelligence to enhance data security 
in distributed computing environments. This literature 

review synthesizes findings from key studies conducted 

during this timeframe, highlighting advancements, 

methodologies, and challenges associated with deep 

learning-based data exfiltration detection in edge 

computing [9]. 

The global data exfiltration landscape has evolved 

considerably between 2020 and 2025, with the market 

projected to register a compound annual growth rate 

(CAGR) of 12% during this period. This growth 

underscores the increasing importance of robust security 

measures to combat sophisticated data breaches. 
Researchers have recognized the potential of deep learning 

models, such as Convolutional Neural Networks (CNNs) 

and Recurrent Neural Networks (RNNs), in identifying 

complex patterns associated with unauthorized data 

transfers. These models have been instrumental in 

analyzing vast datasets to detect anomalies indicative of 

exfiltration attempts [10]. 

A pivotal study by Erol Gelenbe and colleagues introduced 

the Random Neural Network (RNN) with deep learning 

clusters in smart search applications. This approach 

demonstrated the efficacy of deep learning in processing 
and analyzing large-scale data, facilitating the detection of 

irregularities that may signal data exfiltration. The study 

emphasized the adaptability of deep learning models in 

dynamic environments, a critical feature for real-time 

threat detection in edge computing systems [11]. 

The healthcare sector, in particular, has been a focal point 

for implementing AI-driven security measures. With the 

digitization of medical records, ensuring the 

confidentiality and integrity of patient data has become 

paramount. Deep learning algorithms have been employed 

to enhance the security of healthcare records by predicting 

potential threats through predictive analytics. By analyzing 

historical data, these models can forecast future security 

incidents, enabling preemptive measures against data 

exfiltration. Additionally, Natural Language Processing 

(NLP) techniques have been integrated to manage and 

secure unstructured data within medical records, further 

bolstering data protection efforts [12]. 

Despite the advancements, the deployment of deep 
learning models in edge computing environments presents 

unique challenges. A notable concern is the susceptibility 

of these models to side-channel attacks, especially when 

implemented on resource-constrained edge devices. 

Research has demonstrated that adversaries can exploit 

side-channel information to extract sensitive details about 

deep learning models, such as architecture and parameters. 

This vulnerability necessitates the development of robust 

defense mechanisms to safeguard models against 

extraction attacks, ensuring the integrity of the detection 

systems [13]. 
The role of AI and machine learning in cybersecurity has 

been projected to expand significantly by 2025. These 

technologies are anticipated to enhance threat detection 

and response capabilities, improve threat hunting, and 

integrate security posture management with behavioral 

analytics. Such integration is expected to facilitate real-

time monitoring and securing of large datasets, enabling 

the prompt identification of risks like data exfiltration 

attempts and unusual data access patterns. The proactive 

adoption of AI-driven security measures is poised to 

address the evolving threat landscape effectively [14]. 
In summary, the period from 2020 to 2025 has witnessed 

substantial progress in employing deep learning techniques 

for real-time data exfiltration detection in edge computing 

systems. While significant strides have been made, 

ongoing research is essential to address challenges related 

to model security, computational efficiency, and the 

dynamic nature of cyber threats. The continuous evolution 

of deep learning methodologies, coupled with 

advancements in edge computing, holds promise for 

developing robust, real-time data exfiltration detection 

systems in the near future [15]. 

III. RESEARCH METHODOLOGY 

The research methodology for this study follows a 

structured approach to developing a deep learning-based 

real-time detection system for data exfiltration in edge 

computing environments. Initially, a comprehensive 

literature review was conducted to understand the existing 

methods, challenges, and advancements in cybersecurity, 

deep learning, and edge computing. This was followed by 

identifying the key threat vectors and attack patterns 

commonly associated with data exfiltration, ensuring that 
the proposed model addresses real-world scenarios. The 

dataset used for training and evaluation was carefully 

curated from publicly available cybersecurity datasets and 

enriched with synthetic data to simulate realistic data 

exfiltration attempts. Feature selection and extraction 

techniques were employed to identify critical attributes 

contributing to unauthorized data transfers. Various deep 

learning models, including Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNNs), 

and Transformer-based architectures, were evaluated for 

their effectiveness in detecting anomalies in network 
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traffic and file access patterns. The models were trained 

using supervised and semi-supervised learning techniques, 

leveraging labeled and partially labeled datasets to 

enhance detection accuracy. To optimize performance, 

hyperparameter tuning was performed using grid search 

and Bayesian optimization methods. The proposed system 

was implemented in a simulated edge computing 

environment, where it was subjected to real-time testing 
against multiple data exfiltration scenarios, including 

insider threats, malware-based exfiltration, and 

unauthorized remote access. The detection accuracy, false 

positive rate, and computational efficiency were measured 

to assess the system’s viability for real-world deployment. 

Additionally, adversarial testing was conducted to evaluate 

the resilience of the model against evasion techniques and 

adversarial attacks. The results were analyzed using 

statistical methods, and comparisons were made with 

existing state-of-the-art detection mechanisms to validate 

the effectiveness of the proposed approach. The study also 
considered ethical and privacy concerns, ensuring 

compliance with data protection regulations while 

handling sensitive information. Finally, the research 

findings were documented, and potential future 

improvements, such as federated learning-based model 

training for enhanced privacy and adaptability, were 

discussed to guide further advancements in this domain. 

IV. RESULTS AND DISCUSSION 

The results of this study demonstrate the effectiveness of 
deep learning models in detecting data exfiltration in real-

time within edge computing environments. The 

transformer-based model exhibited the highest detection 

accuracy of 96.3%, surpassing both CNN and RNN 

models, which achieved 92.5% and 94.1%, respectively. 

This performance advantage can be attributed to the 

model’s ability to capture long-range dependencies in 

network traffic and user behavior, enabling a more precise 

identification of anomalous patterns. The false positive 

rate was lowest for the transformer model at 2.9%, while 

the CNN and RNN models reported false positive rates of 

4.2% and 3.8%, respectively. This reduction in false 
positives is crucial in cybersecurity applications, as 

excessive false alarms can lead to alert fatigue among 

security professionals, reducing the overall effectiveness 

of the security infrastructure. Additionally, the false 

negative rate, which represents undetected exfiltration 

attempts, was lowest in the transformer model at 1.5%, 

indicating a high degree of reliability in identifying 

unauthorized data transfers. The RNN and CNN models, 

while still effective, recorded slightly higher false negative 

rates of 2.1% and 3.3%, respectively, showing that while 

these architectures can detect exfiltration attempts, they 
may miss certain sophisticated attack patterns.   

Another critical metric evaluated in this study was 

precision, which measures the proportion of correctly 

identified exfiltration attempts among all flagged 

instances. The transformer-based model achieved a 

precision of 95.8%, significantly higher than the CNN 

model at 91.8% and the RNN model at 93.6%. Higher 

precision is essential in real-world applications, as it 

ensures that detected exfiltration attempts are indeed 

malicious, reducing the likelihood of security teams 

wasting resources on investigating false alarms. Recall, 

another vital metric, was highest for the transformer model 

at 97.1%, indicating that it successfully identified most 

data exfiltration attempts, leaving minimal undetected 

cases. The RNN model followed closely with a recall of 

95.0%, while the CNN model achieved a recall of 93.5%. 

The F1-score, which balances precision and recall, was 

also highest for the transformer model at 96.4%, 

reinforcing its superiority in accurately detecting and 
flagging unauthorized data transfers.   

Computational efficiency is another essential factor when 

deploying deep learning models in edge computing 

environments. The transformer-based model demonstrated 

the lowest computational overhead, making it more 

suitable for real-time deployment. In contrast, the RNN 

model exhibited the highest computational cost due to its 

sequential processing nature, which requires more 

resources and time to analyze incoming data streams. The 

CNN model, while computationally efficient, required 

more processing time than the transformer-based 
approach, highlighting the importance of selecting models 

that balance detection accuracy with system resource 

constraints. Training time analysis showed that the 

transformer model was the fastest, taking only 290 

seconds, compared to 350 seconds for the CNN model and 

420 seconds for the RNN model. This difference in 

training times suggests that transformer models can be 

trained and updated more frequently, allowing for rapid 

adaptation to emerging threats in a dynamic cybersecurity 

landscape.   

The study also compared deep learning-based detection 
mechanisms with traditional security methods, which 

showed significantly lower performance across all metrics. 

Traditional techniques achieved a detection accuracy of 

only 85.7%, with a false positive rate of 8.5% and a false 

negative rate of 5.8%. These results highlight the 

limitations of conventional security systems, which often 

rely on rule-based detection and signature-based 

approaches that struggle to identify novel and evolving 

threats. The lower precision and recall of traditional 

methods further emphasize the need for AI-driven 

solutions that can dynamically adapt to new attack 

patterns. The inability of traditional methods to efficiently 
analyze large volumes of network traffic and behavioral 

data also contributes to their lower performance, 

underscoring the advantages of deep learning in handling 

complex and high-dimensional cybersecurity challenges.   

A key observation from the results is that deep learning 

models, particularly transformers, can significantly reduce 

the incidence of false positives while maintaining high 

detection rates. False positives have historically been a 

major challenge in cybersecurity, as they can lead to alert 

fatigue and desensitization among security teams. By 

minimizing false positives, the transformer model ensures 
that security alerts are meaningful and actionable, 

improving the overall efficiency of incident response 

teams. Similarly, the low false negative rate indicates that 

real threats are rarely overlooked, a critical factor in 

preventing successful data breaches.   

The robustness of the proposed models was further 

evaluated through adversarial testing, where attackers 

attempted to bypass detection using obfuscation 

techniques, encryption, and low-and-slow data exfiltration 

methods. The transformer-based model demonstrated 

resilience against such evasion tactics, maintaining high 
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detection rates even when adversaries attempted to 

disguise malicious activities. This robustness is 

particularly significant in modern cybersecurity, where 

attackers frequently adapt their strategies to bypass 

traditional security mechanisms. The RNN and CNN 

models, while still effective, exhibited a slightly higher 

susceptibility to evasion techniques, suggesting that 

further enhancements, such as adversarial training and 
anomaly detection fusion, could further improve their 

resilience.   

Another important aspect of this study is its implications 

for real-world deployment. Edge computing environments 

often operate under resource constraints, making it crucial 

to deploy models that can run efficiently without 

overwhelming system resources. The transformer model’s 

lower computational overhead makes it a viable candidate 

for integration into edge-based security solutions, enabling 

real-time monitoring and response. Additionally, the 

ability to process network traffic in real-time allows for 
immediate mitigation of threats, reducing the window of 

opportunity for attackers to exfiltrate sensitive data. The 

scalability of the proposed approach also ensures that it 

can be deployed across various edge computing 

architectures, including Internet of Things (IoT) networks, 

cloud-edge hybrid systems, and industrial control systems.   

The study also sheds light on the evolving nature of data 

exfiltration techniques and the necessity of continuously 

updating detection models. As attackers develop more 

sophisticated methods to evade detection, it is imperative 

that security solutions incorporate continuous learning 
mechanisms. Future work could explore the integration of 

federated learning to enable collaborative model training 

across multiple edge nodes without compromising data 

privacy. This approach would allow for continuous model 

improvement while preserving the confidentiality of local 

datasets. Additionally, the incorporation of explainable AI 

(XAI) techniques could enhance the interpretability of 

detection decisions, providing security analysts with 

insights into why a particular activity was flagged as 

suspicious.   

Ethical considerations and data privacy were also taken 

into account in this study. Given the sensitivity of data 
being monitored in edge computing environments, it is 

essential to ensure that detection mechanisms operate 

within legal and ethical boundaries. The proposed model 

was designed to comply with data protection regulations, 

ensuring that user privacy is maintained while still 

providing effective security monitoring. Techniques such 

as differential privacy and secure multi-party computation 

could further enhance the privacy-preserving capabilities 

of deep learning-based detection systems.   

In conclusion, the results of this study demonstrate that 
deep learning models, particularly transformer-based 

architectures, offer significant advantages in detecting data 

exfiltration in edge computing environments. The high 

detection accuracy, low false positive and false negative 

rates, and efficient computational performance make the 

transformer model an ideal solution for real-time 

cybersecurity applications. Compared to traditional 

security mechanisms, deep learning models provide 

superior adaptability, robustness, and accuracy in 

identifying and mitigating unauthorized data transfers. 

Future research should focus on improving model 
resilience against adversarial attacks, enhancing 

interpretability through explainable AI, and integrating 

federated learning for continuous model updates. By 

leveraging these advancements, cybersecurity 

professionals can build more effective defenses against the 

ever-evolving landscape of data exfiltration threats. 

The figures illustrate a comprehensive performance 

comparison of different models based on various 

evaluation metrics. Figure 1 presents the accuracy of the 

models, showcasing their overall correctness in 

classification. Figure 2 highlights the false positive rate, 
indicating the proportion of incorrect positive predictions. 

Figure 3 focuses on the false negative rate, measuring the 

proportion of actual positives that were incorrectly 

classified as negatives. Figure 4 evaluates precision, 

reflecting the accuracy of positive predictions made by 

each model. Figure 5 analyzes recall, which represents the 

model's ability to correctly identify all relevant instances. 

Figure 6 provides the F1 score, a harmonic mean of 

precision and recall, offering a balanced assessment of 

model performance. Lastly, Figure 7 compares the training 

time of the models, indicating their computational 

efficiency. These figures collectively help in assessing the 
trade-offs between accuracy, error rates, and 

computational cost for different models. 

 

Figure 1: Performance Comparison for Accuracy 
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Figure 2: Performance Comparison for False Positive Rate 

 

Figure 3: Performance Comparison for False Negative Rate 

 

Figure 4: Performance Comparison for Precision 
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Figure 5: Performance Comparison for Recall 

 
Figure 6: Performance Comparison for F1 Score 

 

Figure 7: Performance Comparison for Training Time 

V. CONCLUSION 

This study demonstrates the effectiveness of deep learning 
models, particularly transformer-based architectures, in 

detecting data exfiltration in real-time within edge 

computing environments. The results indicate that the 

transformer model outperforms CNN and RNN models in 

terms of detection accuracy, precision, recall, and 
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computational efficiency, making it a highly suitable 

choice for security applications in resource-constrained 

environments. The significantly lower false positive and 

false negative rates achieved by the transformer model 

highlight its reliability in minimizing both unnecessary 

alerts and undetected threats. Compared to traditional 

security methods, which struggle with evolving attack 

patterns and high false alarm rates, deep learning-based 
approaches offer superior adaptability and resilience. The 

ability of the proposed model to process network traffic 

efficiently and mitigate threats in real time makes it a 

valuable addition to modern cybersecurity frameworks. 

Additionally, the study underscores the importance of 

continuous learning mechanisms, such as federated 

learning and adversarial training, to further enhance model 

robustness against emerging threats. Future work should 

focus on integrating explainable AI techniques to improve 

interpretability and trust in automated security decisions, 

as well as exploring privacy-preserving methods to ensure 
compliance with data protection regulations. By 

leveraging advanced deep learning techniques, 

organizations can significantly strengthen their defense 

mechanisms against data exfiltration, thereby reducing the 

risk of sensitive information being compromised in edge 

computing systems. 
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