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Abstract- In HDFS, the Namenode handles all the 
metadata about the files. Client contacts the Namenode 
for accessing any file to get its mapping to the blocks on 
Datanodes. Namenode has to store this data in its RAM 
to allow faster access to clients on their requests. Hence 
HDFS Datanodes’ metadata is restricted by the capacity 
of the RAM. This makes the Namenode as the single 
point of failure in HDFS. In our approach we present 
multiple Namenodes with distributed namespace using 
Chord protocol. Multiple Namenodes will be arranged 
in Chord ring to provide scalable and fault tolerant 
architecture in HDFS. 
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I. INTRODUCTION 

Hadoop is ideal for storing large amounts of data, like 
terabytes and petabytes and uses a distributed file system 
for data storage called Hadoop Distributed File System 
(HDFS). There are thousands of server machines in hadoop 
cluster. This implies more possibility of hardware failure. 
Thus, fault detection and automatic prompt server recovery 
are fundamental architectural goals of HDFS. The same 
applies for the Namenode server, as it is the only master 
component that provides access to entire HDFS cluster. 
HDFS’s performance heavily relies on the availability of 
single Namenode machine. 

 
Hadoop applications run over HDFS, which has a 

single Namenode for storage of namespace. This entire 
namespace is maintained in Namenode's RAM so that 
metadata can be fetched at faster rate. Hence, HDFS 
Datanodes’ metadata is restricted by the capacity of the 
RAM of Namenode. According to statistics on YAHOO 
clusters, a file on average consists of 1.5blocks and as 
Namenode uses less than 200 bytes to store a single 
metadata object, it takes 600 bytes to store an average file in 
Namenode’s RAM. To store 100 million files (referencing 
200 million blocks), a Namenode should have at least 60GB 
of RAM[12].  
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 Chord’s main goal is the location of entities in P2P 
environments, like documents, files, or any resource that 
one might want to share in a computer network. It is a 
distributed lookup protocol which maps a given key onto a 
node. Data is easily placed in a Chord by associating a key 
with each resource item. Along with Chord protocol’s 
functionality, we also make use of Metadata Lookup Table 
for faster lookup. 

 High Availability Issue: An HDFS needs a single 
controller server machine, the Namenode. This becomes a 
single point-of-failure for an HDFS implementation. If this 
Namenode fails to work, the entire system comes to a halt-
state. After it gets back online, it must respond to all client 
requests and Datanode manage operations. The Namenode 
server restoration process can take over half an hour for a 
large cluster. The HDFS also includes a Secondary 
Namenode, which should not be thought of as the 
replacement for the Primary Namenode server. In case of 
primary Namenode failure, it is not the responsibility of the 
secondary Namenode to take over the primary. In reality, it 
only functions to build the periodic image-based snapshots 
of the Primary Namenode's directory information and save 
them to local/remote directories. These image-based 
checkpoints can only be used to restart a failed Primary 
Namenode without having to replay the entire journal of 
HDFS actions, the edit log to create an up-to-date directory 
structure. 

II. RELATED WORK 

 The high availability issue of HDFS is addressed by 
making use of various strategies. Few of them are as 
follows, 

1. Hot Standby: In this technique, a hot standby server node 
is maintained with complete and up-to-date copy of the 
state of its primary node. In case of primary Namenode 
failover, it can be replaced by the standby Namenode server 
within a short period of time. The backup node of Hadoop 
can be used to provide the high available solution.   

 The use of hot standby server node does not ensure the 
distribution of namespace. Thus, even though it takes up the 
primary’s responsibility, it does not achieve scalability of 
the cluster due to the RAM size. 

2. HDFS Federation: Apache addressed the issue of 
Namenode scalability and proposed the solution with 
multiple Namenodes. In a single cluster, multiple 
independent Namenodes are configured managing their own 
namespace volumes. The datanodes register themselves 
with all federated Namenodes. A block pool is a set of 
blocks that belongs to a single namespace. Datanodes store 
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blocks for all the block pools in the cluster. It is managed 
independently of the other block pools. This allows a 
namespace to generate block ids for new blocks without the 
need for coordination with other namespaces. A client-side 
mount table is maintained to provide a global view of the 
namespaces. 

 As it makes use of static subtree partitioning, the 
workload may not be evenly distributed among Namenodes.  

 This paper proposes a fault tolerant, highly available 
and widely scalable HDFS architecture having multiple 
Namenodes, with distributed namespace. The Chord 
protocol is used for namespace distribution amongst 
Namenodes. 

III. EXISTING HADOOP ARCHITECTURE 

HDFS has master/slave architecture. A typical Hadoop 
cluster is mainly comprised of a Namenode  
and several Datanode machines as shown in Figure 1.  
The Namenode manages the HDFS namespace and 
regulates access to files that are requested by clients. 
Datanodes, which manage storage attached to the nodes that 
they run on, store the actual data.  
 

The Namenode and Datanode are software programs 
designed to run on everyday use machines.  HDFS can be 
run on any machine that supports Java and therefore can run 
either a Namenode or the Datanode software. Usage of the 
highly portable and all pervasive Java language means that 
HDFS can be deployed on a wide range of machines. A 
typical deployment has a dedicated machine that runs only 
the Namenode software. Each of the other machines in the 
cluster runs one instance of the Datanode software. The 
architecture does not prevent running multiple Datanodes 
on the same machine but, in practice, that is rarely the case. 

 
MapReduce: For huge data sets of distributed 

applications, MapReduce is well known for its simplicity 
and functionality. It allows moving the computation to the 
data itself. Hence, reducing the cost of data migration. It 
serves as an integral part of Hadoop to support distributed 
computing on large data sets on clusters of computers. 
MapReduce can be applied on the data stored in either a file 
system (unstructured) or within a database (structured). 
During a typical Map function, the master node accepts a 
major input, slices it into several minor sub-problems, and 
allocates them to worker nodes. A worker node could repeat 
this process again, if needed, resulting in a multi-level tree 
structure. Finally, the worker node processes the received 
problem chunk, and returns the processed data back to its 
master node. In the "Reduce" function, the master node 
receives the processed sub-problems and aggregates them in 
some way to form the output.  

 
MapReduce has been wisely chosen to be the part of 

Hadoop project because it enables unnoticed distributed 
processing of the map and reduction operations. Hence, 
multiple map functions can be run in parallel, given that, 
each mapping operation is autonomous of the other. In 
reality, however, this condition is limited by the data source 

and/or the number of CPUs near that data. Likewise, a set 
of 'reducers' can be run all at the same time during the 
reduction phase, given that all outputs of the map operation, 
which share the same key, are presented to the same reducer 
simultaneously. Although, this procedure may look 
ineffective compared to other sequential algorithms, 
MapReduce can be functional to potentially larger datasets 
than "commodity" servers can handle. Hence, for instance, 
using MapReduce, a large server cluster can sort a petabyte 
of data in only a few hours. Moreover, this parallelism also 
enables a probability of high availability in case of a partial 
failure of servers or storage during the operation. That is, if 
one mapper or reducer fails, the work can be rescheduled, 
given that the input data is still available.  

 

 
   Fig 1. Hadoop Architecture 

 

IV. CHORD PROTOCOL 

 The function of Chord protocol is primitive: for a 
unique key, it maps the key to a node. This node, depending 
on the application using Chord, could be in charge for 
storing a corresponding value for its key. Chord employs 
consistent hashing to allocate keys to Chord nodes. Because 
each node receives approximately the equal number of keys, 
consistent hashing performs load balancing and needs 
comparatively less reallocation of keys when nodes join and 
leave the system. 

The Hash function assigns each node and key, an m-bit 
identifier using a base hash function SHA-1. The node 
identifier is calculated by performing the hashing on the IP 
address of the node. The identifier for key can be generated 
by hashing any attribute of the file. 

 ID(node)=hash(IP) 

 ID(key)=hash(key) 

 In an m-bit identifier space, there are 2m identifiers. 
Identifiers are ordered on an identifier circle modulo 2m [4] . 
The identifier ring is called Chord ring. Key k is assigned to 
the first node whose identifier is equal to or follows (the 
identifier of) k in the identifier space. This node is the 
successor node of key k. 
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    Fig 2. Chord Ring 

 

 As shown in fig.2, there are four nodes in the system with 
identifiers 1,3,5,8 respectively, arranged in clockwise ring. There 
are total six keys 1, 2, 3, 4, 6, 7. Key 1 and key 3 is assigned to 
node 1 and node 3 respectively. As there is no node with identifier 
2, key 2 is assigned to first node with identifier higher than 2 
which is node 3. Similarly key 4 is assigned to node 5 and key 6, 
key 7 to node 8. 

V. THE PROPOSED ARCHITECTURE 

The management of ever increasing size of the 
namespace which holds data related to billions of files 
comes across as a great challenge. It imposes a threat to 
high scalability and performance of metadata services. An 
approach to handle the mentioned threats could be the use 
of distributed namespaces. This can be done by multiple 
Namenodes instead of the centralized Namenode. The 
proposed architecture addresses the issues of high 
scalability, SPOF (Single Point of failure), high availability, 
load balancing without compromising the performance. 

 
Metadata Lookup Table 
 
 The metadata lookup table is maintained at the client 
side. The entries in the MLT consist of the range of hash 
values and the IP address of Namenode responsible for that 
range. Whenever the client access the file, the file ID is 
searched into the entries of the MLT and the IP address of 
the Namenode responsible for that file is obtained. MLT 
introduces an additional level of indirection between the 
client and the Namenode. We make use of the MLT 
structure instead of Chord Protocol’s Finger table to provide 
faster access to metadata. 
 
Namespace Distribution by Hashing 
 

In our approach the Each Namenode is assigned an 
identifier. This identifier is actually the SHA-1 hash of IP 
address of respective Namenode. Each Namenode is 
responsible for a set of keys which falls between its 
predecessor and itself. The file identifier is generated by  

hashing the path of file. File k is assigned to the first node 
whose identifier is equal to or greater than k in the identifier 
space, regardless of the owner of the resource that generated 
this key. This Namenode is called the successor node of k. 
The Metadata Lookup Table is the structure implemented at 
client side which helps to directly identify the responsible 
Namenode for query. 
 When client want to perform any operation it will 
calculate SHA-1 hash of file path. Then it will look up in 
the MLT for the range in which the file identifier sits, which 
will ultimately give the IP address of Namenode responsible 
for that request. Now, client can directly contact that 
Namenode for operation. 

Though it looks like multiple Namenodes make HDFS 
complex, the single point-of-failure HDFS Namenode and 
its RAM limitation to keep all the files metadata, stored in 
the Datanodes, required an alternative solution. Chord 
integration into HDFS Namenode provides a reliable and 
efficient solution to this problem.  

 
 

 
               Fig 3. Proposed architecture 

         

  VI. CONCLUSION 

 
In this paper, a new fault-tolerant architecture for HDFS 

is introduced. The dependency of whole system on a single 
Namenode server is decentralized using distribution of 
namespace on multiple Namenodes.  
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