
International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-3, Issue-2, MARCH-2015

8

Improved Fault-tolerant Architecture for HDFS
using Distributed Namespace

Veena Dange, Pallavi Deshmukh, Sayali Deshpande, Madhubala Girase, Prof. Ratan Deokar

Abstract- In HDFS, the Namenode handles all the
metadata about the files. Client contacts the Namenode
for accessing any file to get its mapping to the blocks on
Datanodes. Namenode has to store this data in its RAM
to allow faster access to clients on their requests. Hence
HDFS Datanodes’ metadata is restricted by the capacity
of the RAM. This makes the Namenode as the single
point of failure in HDFS. In our approach we present
multiple Namenodes with distributed namespace using
Chord protocol. Multiple Namenodes will be arranged
in Chord ring to provide scalable and fault tolerant
architecture in HDFS.

Keywords—Chord DHT, HDFS, MLT, Namenode.

I. INTRODUCTION

Hadoop is ideal for storing large amounts of data, like
terabytes and petabytes and uses a distributed file system
for data storage called Hadoop Distributed File System
(HDFS). There are thousands of server machines in hadoop
cluster. This implies more possibility of hardware failure.
Thus, fault detection and automatic prompt server recovery
are fundamental architectural goals of HDFS. The same
applies for the Namenode server, as it is the only master
component that provides access to entire HDFS cluster.
HDFS’s performance heavily relies on the availability of
single Namenode machine.

Hadoop applications run over HDFS, which has a

single Namenode for storage of namespace. This entire
namespace is maintained in Namenode's RAM so that
metadata can be fetched at faster rate. Hence, HDFS
Datanodes’ metadata is restricted by the capacity of the
RAM of Namenode. According to statistics on YAHOO
clusters, a file on average consists of 1.5blocks and as
Namenode uses less than 200 bytes to store a single
metadata object, it takes 600 bytes to store an average file in
Namenode’s RAM. To store 100 million files (referencing
200 million blocks), a Namenode should have at least 60GB
of RAM[12].

Manuscript received March 04, 2015.
Veena Dange, Computer Department, Pimpri Chinchwad College Of
Engineering , Pune, India.
Pallavi Deshmukh, Computer Department, Pimpri Chinchwad College Of
Engineering , Pune, India.
Sayali Deshpande, Computer Department, Pimpri Chinchwad College Of
Engineering , Pune, India.
Madhubala Girase, Computer Department, Pimpri Chinchwad College Of
Engineering , Pune, India.

 Chord’s main goal is the location of entities in P2P
environments, like documents, files, or any resource that
one might want to share in a computer network. It is a
distributed lookup protocol which maps a given key onto a
node. Data is easily placed in a Chord by associating a key
with each resource item. Along with Chord protocol’s
functionality, we also make use of Metadata Lookup Table
for faster lookup.

 High Availability Issue: An HDFS needs a single
controller server machine, the Namenode. This becomes a
single point-of-failure for an HDFS implementation. If this
Namenode fails to work, the entire system comes to a halt-
state. After it gets back online, it must respond to all client
requests and Datanode manage operations. The Namenode
server restoration process can take over half an hour for a
large cluster. The HDFS also includes a Secondary
Namenode, which should not be thought of as the
replacement for the Primary Namenode server. In case of
primary Namenode failure, it is not the responsibility of the
secondary Namenode to take over the primary. In reality, it
only functions to build the periodic image-based snapshots
of the Primary Namenode's directory information and save
them to local/remote directories. These image-based
checkpoints can only be used to restart a failed Primary
Namenode without having to replay the entire journal of
HDFS actions, the edit log to create an up-to-date directory
structure.

II. RELATED WORK

 The high availability issue of HDFS is addressed by
making use of various strategies. Few of them are as
follows,

1. Hot Standby: In this technique, a hot standby server node
is maintained with complete and up-to-date copy of the
state of its primary node. In case of primary Namenode
failover, it can be replaced by the standby Namenode server
within a short period of time. The backup node of Hadoop
can be used to provide the high available solution.

 The use of hot standby server node does not ensure the
distribution of namespace. Thus, even though it takes up the
primary’s responsibility, it does not achieve scalability of
the cluster due to the RAM size.

2. HDFS Federation: Apache addressed the issue of
Namenode scalability and proposed the solution with
multiple Namenodes. In a single cluster, multiple
independent Namenodes are configured managing their own
namespace volumes. The datanodes register themselves
with all federated Namenodes. A block pool is a set of
blocks that belongs to a single namespace. Datanodes store

IMPROVED FAULT TOLERANT ARCHITECTURE FOR HDFS USING DISTRIBUTED NAMESPACE

9

blocks for all the block pools in the cluster. It is managed
independently of the other block pools. This allows a
namespace to generate block ids for new blocks without the
need for coordination with other namespaces. A client-side
mount table is maintained to provide a global view of the
namespaces.

 As it makes use of static subtree partitioning, the
workload may not be evenly distributed among Namenodes.

 This paper proposes a fault tolerant, highly available
and widely scalable HDFS architecture having multiple
Namenodes, with distributed namespace. The Chord
protocol is used for namespace distribution amongst
Namenodes.

III. EXISTING HADOOP ARCHITECTURE

HDFS has master/slave architecture. A typical Hadoop
cluster is mainly comprised of a Namenode
and several Datanode machines as shown in Figure 1.
The Namenode manages the HDFS namespace and
regulates access to files that are requested by clients.
Datanodes, which manage storage attached to the nodes that
they run on, store the actual data.

The Namenode and Datanode are software programs
designed to run on everyday use machines. HDFS can be
run on any machine that supports Java and therefore can run
either a Namenode or the Datanode software. Usage of the
highly portable and all pervasive Java language means that
HDFS can be deployed on a wide range of machines. A
typical deployment has a dedicated machine that runs only
the Namenode software. Each of the other machines in the
cluster runs one instance of the Datanode software. The
architecture does not prevent running multiple Datanodes
on the same machine but, in practice, that is rarely the case.

MapReduce: For huge data sets of distributed

applications, MapReduce is well known for its simplicity
and functionality. It allows moving the computation to the
data itself. Hence, reducing the cost of data migration. It
serves as an integral part of Hadoop to support distributed
computing on large data sets on clusters of computers.
MapReduce can be applied on the data stored in either a file
system (unstructured) or within a database (structured).
During a typical Map function, the master node accepts a
major input, slices it into several minor sub-problems, and
allocates them to worker nodes. A worker node could repeat
this process again, if needed, resulting in a multi-level tree
structure. Finally, the worker node processes the received
problem chunk, and returns the processed data back to its
master node. In the "Reduce" function, the master node
receives the processed sub-problems and aggregates them in
some way to form the output.

MapReduce has been wisely chosen to be the part of

Hadoop project because it enables unnoticed distributed
processing of the map and reduction operations. Hence,
multiple map functions can be run in parallel, given that,
each mapping operation is autonomous of the other. In
reality, however, this condition is limited by the data source

and/or the number of CPUs near that data. Likewise, a set
of 'reducers' can be run all at the same time during the
reduction phase, given that all outputs of the map operation,
which share the same key, are presented to the same reducer
simultaneously. Although, this procedure may look
ineffective compared to other sequential algorithms,
MapReduce can be functional to potentially larger datasets
than "commodity" servers can handle. Hence, for instance,
using MapReduce, a large server cluster can sort a petabyte
of data in only a few hours. Moreover, this parallelism also
enables a probability of high availability in case of a partial
failure of servers or storage during the operation. That is, if
one mapper or reducer fails, the work can be rescheduled,
given that the input data is still available.

 Fig 1. Hadoop Architecture

IV. CHORD PROTOCOL

 The function of Chord protocol is primitive: for a
unique key, it maps the key to a node. This node, depending
on the application using Chord, could be in charge for
storing a corresponding value for its key. Chord employs
consistent hashing to allocate keys to Chord nodes. Because
each node receives approximately the equal number of keys,
consistent hashing performs load balancing and needs
comparatively less reallocation of keys when nodes join and
leave the system.

The Hash function assigns each node and key, an m-bit
identifier using a base hash function SHA-1. The node
identifier is calculated by performing the hashing on the IP
address of the node. The identifier for key can be generated
by hashing any attribute of the file.

 ID(node)=hash(IP)

 ID(key)=hash(key)

 In an m-bit identifier space, there are 2m identifiers.
Identifiers are ordered on an identifier circle modulo 2m [4] .
The identifier ring is called Chord ring. Key k is assigned to
the first node whose identifier is equal to or follows (the
identifier of) k in the identifier space. This node is the
successor node of key k.

International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-3, Issue-2, MARCH-2015

10

 Fig 2. Chord Ring

 As shown in fig.2, there are four nodes in the system with
identifiers 1,3,5,8 respectively, arranged in clockwise ring. There
are total six keys 1, 2, 3, 4, 6, 7. Key 1 and key 3 is assigned to
node 1 and node 3 respectively. As there is no node with identifier
2, key 2 is assigned to first node with identifier higher than 2
which is node 3. Similarly key 4 is assigned to node 5 and key 6,
key 7 to node 8.

V. THE PROPOSED ARCHITECTURE

The management of ever increasing size of the
namespace which holds data related to billions of files
comes across as a great challenge. It imposes a threat to
high scalability and performance of metadata services. An
approach to handle the mentioned threats could be the use
of distributed namespaces. This can be done by multiple
Namenodes instead of the centralized Namenode. The
proposed architecture addresses the issues of high
scalability, SPOF (Single Point of failure), high availability,
load balancing without compromising the performance.

Metadata Lookup Table

 The metadata lookup table is maintained at the client
side. The entries in the MLT consist of the range of hash
values and the IP address of Namenode responsible for that
range. Whenever the client access the file, the file ID is
searched into the entries of the MLT and the IP address of
the Namenode responsible for that file is obtained. MLT
introduces an additional level of indirection between the
client and the Namenode. We make use of the MLT
structure instead of Chord Protocol’s Finger table to provide
faster access to metadata.

Namespace Distribution by Hashing

In our approach the Each Namenode is assigned an
identifier. This identifier is actually the SHA-1 hash of IP
address of respective Namenode. Each Namenode is
responsible for a set of keys which falls between its
predecessor and itself. The file identifier is generated by

hashing the path of file. File k is assigned to the first node
whose identifier is equal to or greater than k in the identifier
space, regardless of the owner of the resource that generated
this key. This Namenode is called the successor node of k.
The Metadata Lookup Table is the structure implemented at
client side which helps to directly identify the responsible
Namenode for query.
 When client want to perform any operation it will
calculate SHA-1 hash of file path. Then it will look up in
the MLT for the range in which the file identifier sits, which
will ultimately give the IP address of Namenode responsible
for that request. Now, client can directly contact that
Namenode for operation.

Though it looks like multiple Namenodes make HDFS
complex, the single point-of-failure HDFS Namenode and
its RAM limitation to keep all the files metadata, stored in
the Datanodes, required an alternative solution. Chord
integration into HDFS Namenode provides a reliable and
efficient solution to this problem.

 Fig 3. Proposed architecture

 VI. CONCLUSION

In this paper, a new fault-tolerant architecture for HDFS

is introduced. The dependency of whole system on a single
Namenode server is decentralized using distribution of
namespace on multiple Namenodes.

References
[1] Towards a scalable HDFS architecture, Farag Azzedin IEEE 2013.

[2] Load rebalancing for Distributed File System in Clouds, IEEE
transactions on Parallel and distributed system.

[3] ALDM: Adaptive Loading Data Migration in Distributed File
System, IEEE transactions 2013.

[4] Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications.

IMPROVED FAULT TOLERANT ARCHITECTURE FOR HDFS USING DISTRIBUTED NAMESPACE

11

[5] Classification based Metadata Management for HDFS, 2012 IEEE
14th International Conference on High Performance Computing and
Communications.

[6] A Novel Blocks Placement Strategy for Hadoop, 2012 IEEE/ACIS
11th International Conference on Computer and Information Science.

[7] https://hadoop.apache.org/docs/r2.3.0/hadoop-project-
dist/hadoop-hdfs/Federation.html

[8] From Backup to Hot Standby: High Availability for HDFS,2012 31st
International Symposium on Reliable Distributed Systems

[9] An Adaptive Feedback Load Balancing Algorithm in HDFS,
2013 5th International Conference on Intelligent Networking and
Collaborative Systems

[10] NCluster: Using Multiple Active Namenodes toAchieve High
Availability for HDFS , 2013 IEEE International Conference on High
Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing

[11] http://www.ibm.com/software/data/infosphere/hadoop/

[12] https://developer.yahoo.com/blogs/hadoop/scalability-hadoop-
distributed-file-system-452.html

VEENA DANGE
 Bachelor of Computer Engineering, student of
Pimpri Chinchwad College Of Engineering, Pune.

SAYALI DESHPANDE
Bachelor of Computer Engineering, student of Pimpri
Chinchwad College Of Engineering, Pune.

MADHUBALA GIRASE
Bachelor of Computer Engineering, student of Pimpri
Chinchwad College Of Engineering, Pune.

PALLAVI DESHMUKH
 Bachelor of Computer Engineering, student of Pimpri
Chinchwad College Of Engineering, Pune.

PROF. RATAN DEOKAR

Is a lecturer at Pimpri Chinchwad College of
Engineering, Pune, in the Computer Department . He
has bachelor’s and master’s degree in IT engineering. He
has 7 years of teaching experience.

