
International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

ISSN (Online): 2347-5552, Volume-13, Issue-4, July 2025

DOI: https:/doi.org/10.55524/ijircst.2025.13.4.8

Article ID IRP-1662, Pages 76-84

www.ijircst.org

Innovative Research Publication 76

Towards a JAR Based PDP Data Integrity Assurance in Cloud

Computing

Rizwan Saleem1 , Nazia Akram 2, and Sumaira Ameer Jan 3

1 Visiting Lecturer, Department of Computer Science, Islamia University, Bahawalpur, Pakistan

2, 3 Masters Student, Computer Science and Technology, Dalian Maritime University, China

Correspondence should be addressed to Rizwan Saleem;

 Received 27 June 2025; Revised 12 July 2025; Accepted 25 July 2025

Copyright © 2025 Made Rizwan Saleem et al. This is an open-access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT- Cloud storage as a service provides

scalability and high availability as per the user's need,
without considerable investment in infrastructure.

However, data security risks, like confidentiality, privacy,

and integrity of the outsourced data, are associated with this

model. Over the years, techniques like remote data checking

(RDC), data integrity checking or data integrity protection

(DIP), provable data possession (PDP), Proof of Storage

(POS) and Proof of irretrievability (POR), etc., have been

devised to frequently and securely check the integrity of

outsourced data. Cloud storage service is always assumed

to be unreliable and insecure, so a secure and efficient data

integrity checking mechanism is of utmost importance. This

thesis focuses on making the existing PDP scheme more
efficient in computation, storage, and communication cost

for extensive data archives. By utilizing JAR and ZIP

technology capabilities, we have reduced the cost of

searching the metadata in the proof generation process from

O(n) to O(1). Due to direct access to metadata, disk I/O cost

is reduced, and we achieved 50 to 60 times faster proof

generation for large datasets. Our proposed scheme

achieved a 50% reduction in the storage size of data and

respective metadata, providing storage and communication

efficiency.

KEYWORDS: Cloud Computing, Integrity Verification,

Cryptographic Techniques, Provable Data Positioning

I. INTRODUCTION

Cloud computing delivers a range of services that provide

flexibility, multi-tenancy, agility, and high availability to

meet user requirements, all without the burden of heavy

infrastructure investments [1]. Small-scale organizations

with large data storage needs often lack the resources to
manage their own data centers effectively. Managing vast

volumes of archival data, such as extensive tape backups,

becomes challenging, despite the relative ease of

maintaining such collections[2].

Software as a Service (SaaS) in the cloud enables users to

benefit from its elastic nature. However, when clients

outsource their data to the cloud, they lose direct control over

it, raising concerns about the authenticity and integrity of

their stored information. Detecting data corruption during

normal access is difficult, and recovery may be impossible if

the issue is discovered too late[3]. Archival data, although
rarely accessed, is highly valuable. Retrieving and

transmitting large archival files also incurs high I/O costs,

which limits the scalability of SaaS solutions when full data

integrity checks are required. Furthermore, cloud storage

providers (CSPs) may have conflicting interests, including

financial incentives, potential dishonesty, or even breaches
of data confidentiality[4]. While CSPs are generally bound

by service-level agreements to protect client data, users

cannot fully trust CSPs alone to maintain data security. SaaS

models face security challenges related to data

confidentiality, privacy, and integrity despite their usability

benefits. Therefore, SaaS platforms must implement reliable

mechanisms to guarantee the integrity of client data in all

circumstances[5]. It assists dynamic operations similar to

block modification, append insertion and deletion. It also

secures our system[6]. Wang et al.[7] planned enhanced

POR supports (MHT) Merkle Hash Tree. Major
characteristics integrated public verifiability by 3rd party

auditors and dynamic functions. Later, in [8], PDP was

planned. They used authenticator Homomorphic in nature

with casual masking and were intelligent and sharp enough

to do public verifiability. Afterward, they handle the

difficulty of O(n) for confirmation by TPA with the help of

BAL. In Remote Data Checking for Network Coding-based

Distributed Storage systems. They used same construction of

a message authentication code, proposed in [6] by a

combination of universal hashing with a PRFs It increased

communication overhead with reduced storage overhead [9].

Classification of data integrity schemes
There are two categories for data integrity checking

schemes

 Provable Data Possession(PDP)

 Proof of retrieval

A. Provable Data Possession (PDP)

PDP schemes Remote Data Checking Using Provable Data

Possession [10] are more probabilistic as these schemes use

sampling or examining random chunks as an alternative to

reading entire files for verification. In PDP, novel data is

initialized to produce various metadata, which is located with
novel data. Afterward, this metadata is used to confirm the

integrity of user's data stored on the cloud. These systems

can only recognize the dishonesty in data except not hold up

corrupted or dishonest data recovery.

https://doi.org/10.55524/ijircst.2025.13.4.8
http://www.ijircst.org/
https://orcid.org/0009-0009-9419-9914

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 77

B. Proof of Retrievability (POR)

Proof of retrievability mechanisms is primarily comparable

to PDP; however, they also endow the data recovery. POR

method uses unneeded or redundant programming, and

encoding data, therefore, offers the recovery if any failure

happens. Provable data possession [11] scheme may be

changed to Proof of retrievability via fault correcting or

removal codes. Inspection protocol of Proof of retrievability

offers the assurance that Cloud Service Provider holds all

data and that it is recoverable, but Provable data possession
makes sure that server has the significant part of data.

Means PDP cannot recognize smaller data corruptions

(1KB) data loss in (20GB) files if any deterioration is

recognized afterward. Provable data possession is not

responsible for the recovery.

In this Paper, the Provable data possession scheme is

selected. Since it is for static data, our focus is on the data

archival in static nature and never usually accessed. The

planned scheme's potency is examined to offer 99%

possession assurance by using 4.6% of chunks of the whole

file. This scheme is suitable for all kinds of data as it is

arrangement data independent.

C. Existing PDP Schemes

Existing PDP meetup the basic 6 out of 7 prerequisites. But

it is unable to fulfil the 7th requirement that ensures the

design is authentic. This design is for massive datasets. The

essential degrading factors for this scheme are metadata per

chunk, the size of chunks chosen, and several other factors.
Now, based on this, we planned an approach that reduces

the effects of these parameters. Our designed system is far

better than the older one and more effective in cost, Time,

and performance. These things also bound, how much time

data holder can confirm the unity of his data it’s relatively

difficult to approach with a strategy that can hold all these

presentation corrupting components in a mode these

presentation does not affect. Well, management of these all

factors can create existing schemes more than competent.

The basic idea is to point the chunk and relevant metadata

jointly in a solitary zipped file in our proposed formulation.
In a similar manner syndicate all chunk's zip file forename,

e.g., for chunk at index 1, zip file forename is "z1.zip" so

with no any calculation we see the pathway of to each one

chunk equivalent to exacting index and therefore we have

straight entrance to some chunk data and personal metadata.

This scheme ready-made the evidence generation of

available schemes about 40%-60% quicker. Another

advantage of the zip scheme is cheaper.

Table 1: Overall view of Data Integrity Checking Schemes Comparison

Scheme Technique(s) Used Limitations

An improved dynamic provable data

possession model (2011)[12]

Used skip list and hashes The client needs to store some secret values

thus need little extra storage like for 4GB file
needs 2MB storage

A Position Paper on Data
Sovereignty: The Importance of Geo
locating Data in the Cloud (2011)[13]

MAC-based PDP with network delay
measurement capabilities

Cannot guarantee that additional copies of data
are not instantiated outside of a prescribed
Geographic area.

Fair and Dynamic Proofs of
Retrievability(2011) [14]

Used authenticated data structure
(range-based 2-3 trees) and incremental

signature scheme and ECC (Error-
correcting codes)

Low performance because of Error-correcting
codes

Robust Dynamic Provable Data
Possession (2012)[15]

Reed-Solomon (RS) codes based on
Cauchy matrices

Efficient, dynamic and identity-based Remote
Data Integrity Checking for multiple replicas
(2019)[16]

a novel identity-based RDIC scheme,
namely Efficient, Dynamic and
Identity-based Multiple Replication
Provable Data Possession (EDID-

MRPDP) without the burden of PKI

Proof of Possession for Cloud Storage via
Lagrangian Interpolation Techniques(2012)
[17]

Secure pseudorandom numbers
(SPRN), Lagrangian Interpolation

Provable Data Possession Using
Sigma-protocols (2012) [18]

Signatures based on Okamoto protocol
using pseudorandom permutations and
pseudorandom generators

No support for dynamic data operations.
Limited to static data only

Ensuring distributed accountability
for data sharing in the cloud (2012)
[19]

Knox:
Privacy-preserving Auditing for Shared Data
with Large Groups in the Cloud (2012)
[20]Error! Reference source not found.

Used group signatures for
homomorphic authenticators to provide
public auditing. Rely on Homomorphic
MACs for storage efficiency. Index

hash tables as identifiers
of chunks

Unable to identify minor corruptions with
sampling. Computation cost increases with
the increase of sampled chunks toidentify
small no of corrupt

chunks

Survey on cloud data integrity proof techniques
(2012)[21]

Rank-based authenticated skip lists High communicatin cost and not secure

Secure and Efficient Proof of Storage with

Deduplication (2012)
[22]

Merkle Hash Tree, Pseudorandom

functions, Hashing

Less efficient and less secure than existing

POW schemes. But provides public auditing
where existing POW schemes do not.

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 78

II. PROPOSED SCHEME

We have designed the Provable Data Possession method,
and our scheme resolves the problem by using the link list

and array. We can quickly contact any index in arrays, and

in the link list, we have to navigate it to attain the desired

index. So, the indexes must be in sorted order in the link

list.

Figure 1: Stream formed PDP

We did not require to navigate the linked list repeatedly as

we build the subfile metadata tags, chunks, and index in a
single file. We recognize the path of every chunk to relax,

and there is no computation, and that’s why we have access

to both the chunk and the personal metadata. Programmable

JAR offers the stream of our formed PDP method derived

from the control logic jointly. Figure 1 display the stream
of our formed PDP method derived from the PDP design of

Ateniese et al.[1].

Figure 2: JAR file is transferred to a server

Phase 1: The first step is to process the input file,

exchange it into an executable JAR, and then transfer it to

the server. It is further elaborated in Figure 2 Phase 2:The

data holder establishes the integrity once the JAR file is

transferred to a server. The data holder produces the

challenge. The server has Proof against this challenged,

and then the data holder confirms the integrity of his data.

In the figure, the prepossessing is explained. The input file

has a fixed length symbolized by Bi in Bi I means to index,

and for every chunk a flag is generated, and Ti represents

that. The Ti and Bi are jointly appended in a single zip file,
and then the zip is added into the JAR. The whole

procedure is repeated for all chunks of the input file.

Afterward, JAR has collected the executable code work

that helps to assure proof production. Figure 3 shows the

complete work and how our designed approach works

Step 1: A JAR file is created by the data holder in which

data is arranged into fixed lengths, and flags are generated

for every chunk. Then the flag and the chunk are jointly

zipped, and then the zip is added into the JAR.

Step 2: Once JAR is created, the related code is also added

that assist in accessing the data and the metadata with the

help of proof generation on the server.

Step 3: Transferring JAR to the server, which contains the

chunks metadata and the related code

Step 4: The user checks the integrity of his data by sending

sampled chunk to the server after data is located over the cloud.

Step 5: Proof generation code is called up once the server

bypasses the challenged chunk. The JAR file does the mining
process because the chunks and metadata flag are in the JAR

file.

Step 6: After all the process is done, the last Proof returns to

the storage server by JAR.

Step 7: The proof that is created by the JAR is sending back to

the data holder for verification.

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 79

Step 8: Data holder verifies the Proof of possession presented

by storage space server via the similar verification technique

of Ateniese PDP planned. If any chunk is modified, deleted, or

an extra piece is added afterward, verification will fall short;

otherwise, it will succeed.

Data holders confirm the verification via the same technique

as Ateniese planned. If any change occurs, then Prooffalls

shorts. Other than that, it will succeed.

Step 9: The result shows to the data holder.

Figure 3: Our designed approach works

In figure 4 shows that the client sends the file containing

blocks and the metadata tags to the server and the

challenges are also sent by the client-side to the server to

verify the integrity. In return, the server accepts the

client's challenges, gets the block into the file, takes the

tags contained in it, and returns the Proof of possession to

the client.

Figure 4: client sends the file containing blocks and the metadata tags

III. RESULTS AND DISCUSSIONS

Algorithms of Proposed Method

GenKey(1k): .

Our approach is based on the following algorithms

GenrateKey(OneK): (CK, xk) is a key generation

algorithm that executes on the client-side. The working

of the PDP relies on these keys. These arguments are

like security parameters S, and it returns a combination

of public and secret keys(CK, xk).

Preprocessing File(file): JAR treats the input file as a

collection of chunks and generates the homomorphic

flags for all chunks. Each chunk and a respective flag is

zipped in a single file and added to JAR. At the end of

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 80

preprocessing, reference to the JAR file, i.e., JAR, is

returned.

Generate Proof(JAR,C): V is executed on the server at

the client's request. Its arguments are JAR file as an input

holding ordered chunks and flags, a challenged C. it
generates the Proof of possession V for the challenged

chunk by accessing chunk and flag inside the JAR.

VerifyProof(V,C): {"true, " false"} is executed by the

data owner to verify the Proof provided by the server.

Arguments of it are challenge C and Proof of possession

V. if verification of Proof is successful means that the

server provided a valid proof for the challenged chunk,
then it returns true, and if Proof is invalid, then it will

return false, indicating the misbehavior of the server

Algorithm 1

Algorithm 1 describes preprocessing step of the proposed

PDP scheme shown in Figure 2. It takes an input file and

treats it as a collection of 4k bytes chunks. Each chunk (Bi)

Is identified by its index (i). Flag (Ti) is generated using the

same construction of PDP against each chunk using its

index and data bytes. Then both data bytes and flag are

zipped together in a zip file (Zi). The name of the zip file is
the index of a chunk, e.g., 1000.blk. This cycle is repeated

for all chunks of the input file. A JAR file is created having

code and data section. The code section contains the

necessary code that provides access to data and metadata in

the proof generation process, while the data section holds

the zip files produced against all file chunks. This approach

provides direct access to both data by sending flag for a

particular index.

Algorithm 2

Algorithm 2 describes how Proof of possession is produced

on a cloud storage space server with the assistance of JAR.

A challenge (C) is an unordered collection of sampled

chunk indexes, and a jar is a predictable file for which a

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 81

storage space server has to offer Proof of possession. The

server gets data chunk (Bi) and flag (Ti) against challenged

chunk index (i) from JAR and utilizes it for proof generation

(using the same method of PDP in [1]). This series is

repeated for all chunks indexes precise in a challenge and at
the end of Proof of possession is returned. Our planned

method does not change the internals of the novel PDP

method proposed in [1]. The only transformation is that it

bases on JAR to present data chunks and flag for the specific

challenged index as an alternative of reading itself. Since

every chunk and its flag are zipped in solitary file and its

forename is index of chunk, so is directly available without

any additional computation. This advance lessens disk

access mainly and thus amplifies performance immensely.

Analysis of Storage and communication

For transferring data on the cloud, you have to pay for both
storage and bandwidth. That's why it matters—data size

along with meta data effects on transfer time. We have

evaluated for both that include data and respective tags. We

have increased the file size gradually and performed tests.

The performance performing parameters are

Data block size = 4KB

Metadata tag size = changeable length
The comparison shows that the designed scheme

achieved30 a % reduction in size. It is effective in

communication and storage too. Bandwidth utilization

and communication time are lesser in data transfer. There

is same input data block. The reduced size is not because

of the meta data size the reason is because we are using

the ZIP technology. In old PDP, all the data and metadata

tags are uncompressed files, and here we have placed all

the data and the metadata tags in a zip file. That is why

the output size is Time analysis of verification process

also reduced.

Figure 5: Size comparison

If the input file size is greater than the communication,

storage cost will also increase. Data holder produces a

challenge that contains a fixed number of blocks indexes

chosen from all blocks. Then cloud storage has to

provide proof of possession against indexes. So, server

needs to access all these metadata tags that are

challenged. The Time taken by the server to calculate

Proof of possession for these two old and new schemes

is compared for several file sizes. 4.2
Since 4KB is tiny, the file size and number of blocks will

also increase, and the Proof of possession time will also

increase. We have chosen 460 blocks randomly. The

comparison shows that the new scheme performs better

as compared to the old method. The performance of the

old PDP goes down as the file size increases, and the new

process generates 50 to 60% faster Proof of possession.

The I/O function is performed for searching the metatags

in the old scheme. The performance of the old PDP is

limited in all aspects.

Time analysis - Before placing the data over the cloud,

the metadata tags are generated using teleprocssing

these tags are later used for Proof of possession
verification. Prepossessing is done on client side. Our

proposed scheme has different prepossessing. Therefore,

we compare the old and new prepossessing. Figure 6

shows the prepossessing.

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 82

Figure 6: Preprocessing time comparison

Data block size = 4KB
Tag size = Changeable

Prepossessing is done at the client-side, so we have

considered a normal machine with specifications with

80GB HDD and two processors, Ubuntu 12.04(OS) with

3GB ram.

Our scheme is efficient and cost-effective but requires

prepossessing Time more. 4.5 graph shows computation

time difference. But its overhead is only oneTime as

compared to the old PDP.

Effect of data block size.

The work of zipping the blocks and tags in the new PDP
reduces the size of the file. But when the zip file is

inserted in the JAR, as the number of entries reaches

above 1000, then the JAR entry takes more Time, and it

increases in Time. After the number of entries gets, more

the new entries get JAR.

And then the processing time increases due to this as

well. These can be improved in two ways.

 If we use a larger block size, then the total number of

blocks will decrease, and entries in JAR did not take

additional Time for adding in zipping, so it will take
lesser teleprocessing.

 We can use a hierarchical directory structure inside

JAR for zip files. This means we have multiple JAR

directories, and it will take constant time.

 To check prepossessing Time and output, we do tests

by keeping the file size the same and increasing the

block size.

File Size = 10.7

When we increase the block size, the total number of

blocks is reduced and affects the prepossessing and

verification Time and output time. A lesser number of

blocks means lesser effort is required to generate the

meta-tags. If meta-tags size is reduced, it reduces the

output time and length. In our proposed scheme,

enhanced and better Time is achieved while setting the
larger block size. The verification time will also decrease

as the number of blocks is lesser. The results are shown

in the figure 7.

 Figure 7: Result

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 83

IV. SUMMARY

The efficiency matters the most, and the lesser computation
and verification Time, the better approach is Analysing the

results that we performed, existing PDP has performance

issues, and communication and analysis cost increases as

the file size increases. The main reason is the variable

length of metadata tags. The other reason is the number of

block sizes. This impact can only be better if we increase

the block size. If the number of blocks is smaller, the

number of file blocks increases, and more computation and

searching are required to increase the I/O cost. It will also

affect storage and communication cost because more

metadata tags are generated for smaller block file sizes that

impact the storage over cloud and transfer Time.
In the proposed scheme only, prepossessing time matters,

and the prepossessing is done on the client-side, so it is

acceptable. The prepossessing time can also be improved

using the larger block size. The proposed scheme has

efficiency in computation communication storage on the

cloud. Different parameters do not degrade the performance

of the proposed project because there is no need to search

as these metadata tags are directly accessible that improves

the block accessible cost and verification. Time cost. As a

result, communication and storage cost becomes lesser, and

this scheme provides more storage efficiency, and we used
JAR technology that allows communication efficiency.

V. CONCLUSION

PDP is the first probabilistic verification method.

Homomorphic tags are generated against data blocks that

verify Proof. Our scheme relies on a similar structure as

Provable Data Possession by Ateniese et al. we achieve

parallel scalability using similar tag generation and data

integrity. We divide a file into the smallest sub-files and

generate homomorphic tags before outsourcing the data.
We zipped the tags and the file into a zip file and then

transferred it into a JAR, and in the end, when the

prepossessing is done, we have a single JAR file that

contains code and provides the integrity proof. Afterward,

the JAR file is transferred to the cloud instead of the original

data file. We achieve the 50% reduction data size, and our

results show that and our performance is far better than the

old PDP.

ACKNOWLEDGEMENT

I am thankful for dr. Tehmreem Masood and dr. Ahmad

Niaz for valuable guidance during this research also

acknowledged superior university Lahore, Pakistan for

providing the computing resources & references.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] G. Ateniese, r. Burns, r. Curtmola, j. Herring, l. Kissner, z.
Peterson, and d. Song, “provable data possession at untrusted
stores,” in proc. 14th acm conf. Comput. Commun. Secur.
(ccs), new york, ny, usa, 2007, pp. 598–609. Available from:
https://doi.org/10.1145/1315245.1315318

[2] G. Ateniese, r. Di pietro, l. V. Mancini, and g. Tsudik,
“scalable and efficient provable data possession,” in proc. 4th
int. Conf. Security and privacy in commun. Netw.

(securecomm), new york, ny, usa, 2008, pp. 9:1–9:10.
Available from: https://doi.org/10.1145/1460877.1460889

[3] R. Curtmola, o. Khan, r. Burns, and g. Ateniese, “mr‑pdp:
multiple‑replica provable data possession,” in proc. 28th int.
Conf. Distributed comput. Syst. (icdcs), beijing, china,

jun. 2008, pp. 411–420. Available from:
https://ieeexplore.ieee.org/abstract/document/4595910

[4] H. Shacham and b. Waters, “compact proofs of
retrievability,” in advances in cryptology – asiacrypt 2008, j.
Pieprzyk, ed., vol. 5350, lecture notes in computer science.
Berlin, germany: springer, 2008, pp. 90–107. Available from:
https://link.springer.com/article/10.1007/s00145-012-9129-2

[5] C. Erway, a. Küpçü, c. Papamanthou, and r. Tamassia,

“dynamic provable data possession,” in proc. 16th acm conf.
Comput. Commun. Secur. (ccs), new york, ny, usa, 2009,
pp. 213–222. Available from:
https://doi.org/10.1145/2699909

[6] K. D. Bowers, a. Juels, and a. Oprea, “hail: a high‑availability
and integrity layer for cloud storage,” in proc. 16th acm conf.
Comput. Commun. Secur. (ccs), new york, ny, usa, 2009,
pp. 187–198. Available from:
https://doi.org/10.1145/1653662.1653686

[7] Q. Wang, c. Wang, j. Li, k. Ren, and w. Lou, “enabling public
verifiability and data dynamics for storage security in cloud
computing,” in proc. 14th eur. Conf. Res. Comput. Secur.
(esorics), berlin, germany, 2009, pp. 355–370.
Available from:
https://link.springer.com/chapter/10.1007/978-3-642-04444-
1_22

[8] C. Wang, q. Wang, k. Ren, and w. Lou, “privacy‑preserving

public auditing for data storage security in cloud computing,”
in proc. 29th annu. Ieee conf. Comput. Commun. (infocom),
san diego, ca, usa, 2010, pp. 525–533. Available from:
https://ieeexplore.ieee.org/abstract/document/5462173

[9] B. Chen, r. Curtmola, g. Ateniese, and r. Burns, “remote data
checking for network coding‑based distributed storage
systems,” in proc. 2010 acm cloud comput. Secur. Workshop
(ccsw), new york, ny, usa, 2010, pp. 31–42. Available from:

https://doi.org/10.1145/1866835.1866842
[10] G. Ateniese, r. Burns, r. Curtmola, j. Herring, o. Khan, l.

Kissner, z. Peterson, and d. Song, “remote data checking
using provable data possession,” acm trans. Inf. Syst. Secur.,
vol. 14, no. 1, pp. 12:1–12:34, jun. 2011. Available from:
https://doi.org/10.1145/1952982.1952994

[11] N.-y. Lee and y.-k. Chang, “hybrid provable data possession
at untrusted stores in cloud computing,” in proc. 17th ieee int.

Conf. Parallel distrib. Syst. (icpads), Washington, DC, USA,
2011, pp. 638–645. Available from:
https://ieeexplore.ieee.org/abstract/document/6121335

[12] F. Liu, d. Gu, and h. Lu, “an improved dynamic provable data
possession model,” in proc. Ieee int. Conf. Cloud comput.
Intell. Syst. (ccis), beijing, china, sept. 2011, pp. 290–295.
Available from:
https://ieeexplore.ieee.org/abstract/document/6045077

[13] Z. N. J. Peterson, m. Gondree, and r. Beverly, “a position

paper on data sovereignty: the importance of geolocating data
in the cloud,” in proc. 3rd usenix conf. Hot topics cloud
comput. (hotcloud), berkeley, ca, usa, 2011, p. 9.
Available from: https://tinyurl.com/4h9zbf46

[14] Q. Zheng and s. Xu, “fair and dynamic proofs of
retrievability,” in proc. 1st acm conf. Data appl. Secur.
Privacy (codaspy), new york, ny, usa, 2011, pp. 237–248.
Available from: https://doi.org/10.1145/1943513.1943546

[15] B. Chen and r. Curtmola, “robust dynamic provable data
possession,” in proc. 32nd int. Conf. Distributed comput.
Syst. Workshops (icdcsw), macau, china, jun. 2012, pp. 515–
525. Available from:
https://ieeexplore.ieee.org/abstract/document/6258200

[16] A. F. Barsoum and m. A. Hasan, “integrity verification of
multiple data copies over untrusted cloud servers,” in proc.
12th ieee/acm int. Symp. Cluster, cloud grid comput.

https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1145/1460877.1460889
https://ieeexplore.ieee.org/abstract/document/4595910
https://link.springer.com/article/10.1007/s00145-012-9129-2
https://doi.org/10.1145/2699909
https://doi.org/10.1145/1653662.1653686
https://link.springer.com/chapter/10.1007/978-3-642-04444-1_22
https://link.springer.com/chapter/10.1007/978-3-642-04444-1_22
https://ieeexplore.ieee.org/abstract/document/5462173
https://doi.org/10.1145/1866835.1866842
https://doi.org/10.1145/1952982.1952994
https://ieeexplore.ieee.org/abstract/document/6121335
https://ieeexplore.ieee.org/abstract/document/6045077
https://tinyurl.com/4h9zbf46
https://doi.org/10.1145/1943513.1943546
https://ieeexplore.ieee.org/abstract/document/6258200

International Journal of Innovative Research in Computer Science and Technology (IJIRCST)

Innovative Research Publication 84

(ccgrid), washington, dc, usa, 2012, pp. 829–834.
Available from:
https://ieeexplore.ieee.org/abstract/document/6217519

[17] M. Krzywiecki and m. Kuty, “proof of possession for cloud
storage via lagrangian interpolation techniques,” in proc. 6th

int. Conf. Network syst. Secur. (nss), berlin, germany, 2012,
pp. 305–319. Available from:
https://link.springer.com/chapter/10.1007/978-3-642-34601-
9_23

[18] A. Mohan and r. Katti, “provable data possession using
sigma‑protocols,” in proc. 11th ieee int. Conf. Trust, secur.
Privacy comput. Commun. (trustcom), liverpool, uk,
jun. 2012, pp. 565–572. Available from:

https://ieeexplore.ieee.org/abstract/document/6296021
[19] S. Sundareswaran, a. Squicciarini, and d. Lin, “ensuring

distributed accountability for data sharing in the cloud,” ieee
trans. Dependable secure comput., vol. 9, no. 4, pp. 556–568,
jul. 2012. Available from:
https://ieeexplore.ieee.org/abstract/document/6165313

[20] B. Wang, b. Li, and h. Li, “knox: privacy‑preserving auditing
for shared data with large groups in the cloud,” in proc. 10th
int. Conf. Appl. Cryptogr. Netw. Secur. (acns), berlin,

germany, 2012, pp. 507–525. Available from:
https://link.springer.com/chapter/10.1007/978-3-642-31284-
7_30

[21] S. Worku, z. Ting, and q. Zhi‑guang, “survey on cloud data
integrity proof techniques,” in proc. 7th asia joint conf. Inf.
Secur. (asia jcis), tokyo, japan, aug. 2012, pp. 85–91.
Available from:
https://ieeexplore.ieee.org/abstract/document/6298140

[22] Q. Zheng and s. Xu, “secure and efficient proof of storage
with deduplication,” in proc. 2nd acm conf. Data appl. Secur.
Privacy (codaspy), new york, ny, usa, 2012, pp. 1–12.
Available from: https://doi.org/10.1145/2133601.2133603

https://ieeexplore.ieee.org/abstract/document/6217519
https://link.springer.com/chapter/10.1007/978-3-642-34601-9_23
https://link.springer.com/chapter/10.1007/978-3-642-34601-9_23
https://ieeexplore.ieee.org/abstract/document/6296021
https://ieeexplore.ieee.org/abstract/document/6165313
https://link.springer.com/chapter/10.1007/978-3-642-31284-7_30
https://link.springer.com/chapter/10.1007/978-3-642-31284-7_30
https://ieeexplore.ieee.org/abstract/document/6298140
https://doi.org/10.1145/2133601.2133603

	A. Provable Data Possession (PDP)
	B. Proof of Retrievability (POR)
	C. Existing PDP Schemes
	Step 3: Transferring JAR to the server, which contains the chunks metadata and the related code

	PDP is the first probabilistic verification method. Homomorphic tags are generated against data blocks that verify Proof. Our scheme relies on a similar structure as Provable Data Possession by Ateniese et al. we achieve parallel scalability using sim...

