

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-2, Issue-5, September-2014

42



Abstract— Android Operating System, by Open Handset
Alliance, prominently led by Google is dominating the share of
smart phones. Mobile applications like banking, e-shopping,
business apps used on these devices have become foundational
tool for today’s workforce.

However the Smartphone users are under continuous threat
of exposure and misuse of their personal information due to
rapid growth of malware for android which significantly
exceeds that of other platforms. Android being open platform
supports the development of applications. Now a day’s one can
publish an app after registration as a developer for USD25.
Due to its availability to all android users, the android market
is the main channel of malware distribution. Along with its
growth, the importance of security has also risen. A
proportional increase in the number of vulnerabilities is also
happening to the extent that there are limited numbers of
security applications available to protect these devices. Among
the security apps many antivirus which work on the
application layer are present in the market which claims the
security.

 However, the efficacies of these applications have not been
empirically established. After studying the shortcomings and
demerits of the available solutions, an enhanced security
solution for android application assessment at the operating
system level is suggested. The solution customizes the android
operating system mainly the package manager which holds the
notification of the activities which takes place on the device.
The package manager is updated to receive the intent passed
by the verification agent activity. An application is built which
is hooked to the package manager which checks across the
database signatures for the malwares and blocks the
installation process of the android application on the system.
Altogether a new android system image is compiled and tested
across the known set of malwares. Unlike antivirus, this check
takes place before the process of installation due to which, we
are able to mitigate attacks caused by malwares on android
smart phones by variety of applications.

Index Terms—Android, smartphones, application security,

malware detection.

OBILE computing is a fact of life in the modern
enterprise. With the rapid and everyday adoption of

mobile devices, enterprise applications have been extended
beyond the confines of the corporate network. The large
attack surface and the proliferation of mobile devices have
created a significant security challenge for companies and
the IT professionals. The mobile security stack consists of
the Infrastructure layer, hardware layer, Operating system
layer and the Application layer. Most of the attacks that are
registered are device based attacks, network based attacks

Manuscript received September 23, 2014
Aparna Bhonde, Department of IT, PIIT Panvel, Mumbai University,

India, 9819829042
Madhumita Chatterjee , Department of IT, PIIT Panvel, Mumbai

University, India,

and the server based attacks. Out of these the most
prominently occurred attacks are the device based attacks
[4]. Attacks against the device are most tangible, impactful
and obvious to the average person. However, a more
dangerous scenario occurs when users download unknown
applications or from the Android App Store. This could lead
to information leakage or complete compromise of the
device, allowing attackers to install malicious certificates,
reconfigure proxy settings or allow man-in-middle (MiTM)
visibility into every user transaction. Hence according to [5]
the application layer has the largest attack surface where
maximum damage to security occurs.
Gartner analysis [15] says that Android is an open source
operating system, prominently led by Google, is having the
maximum market share, where developers can develop their
applications and make it available in the market to the users.
There is a great difficulty to find out the authenticity of the
applications which are downloaded by millions of people
every day on their smart phones. Hence to keep a check on
the malwares and the authenticity of the application we need
to have such a solution which is not dependent on the third
party.
Third party applications which are developed at the
application layer for the assessment of any android app
across malware require the system permissions from the
package manager. But the fact is, package manager does not
grant system permissions to any third party application, until
and unless the android system is root. According to [2] [3],
rooting is a process that allows attaining root access to the
Android Operating system code. It gives the privileges to
modify the software code on the device or install other
software that the manufacturer wouldn’t normally allow to
do. The process of rooting makes the system vulnerable for
attacks as it does not have to do anything to get to the super
user.
Customizing the android operating system is different than
the rooting process. Rooting is a cosmetic procedure and
does not make any changes to the operating system. It only
gives elevated privileges to the user-root access.
The antivirus which claims the security by checking the
malwares in the installed applications on the system also
fails when the malicious app spreads itself blocking the
antivirus. Above all we need such a solution which checks
for the malware in the android app before it gets installed on
the system, Hence we suggest a solution to customize the
android operating system which will scan for the malwares
against the signature database. This process of scanning the
app takes place before the installation of the application on
the smart phone. Hence up to certain extend it mitigates the
risk of the smart phone getting compromised due to
malicious android apps.

System Level Security Solution for Android
Aparna Bhonde, Madhumita Chatterjee

M

System Level Security Solution for Android

43

 Our Work
The solution customizes the latest version of android
operating system, KitKat. Mainly the Package manager
service, present in the android operating system is
customized which holds the notification of the activities.
Every time as soon as a new app tries to get installed on the
device, Package Manager will trigger the MalwareTest App
internally and check the application across the database
signatures for malwares. It gives the notification to the user
about the malware and then user can block the installation
process. Altogether a new android system image is
complied. This facility is not present in any of the android
versions till date. The solution overcomes the difficulty of
the sandbox based file system as well as the android
permission model. Hence, we have tried to apply a security
solution on the top of android Operating system.
The main advantage of using this solution is that the apk is
blocked before installation if it contains malware. This
process does not toil in the background as it triggers only on
arrival of apk hence less amount of power is consumed
which is very important constraint to increase the efficiency
of a mobile device.

 The remainder of this paper is structured as follows. In
Section 2 the background theory is introduced which
includes Android system basics and the discussion of the
security system provided by android operating system. The
shortcomings of antivirus software on the Android Platform
are explained in Section 3. In Section 4 we introduce our
concept for an enhancement in the security of android
operating system. We will discuss the implementation of the
enhanced security solution for the android platform and
Section 5 will be the conclusion

I. BACKGROUND THEORY

A. Android
Android is an operating system designed for smart phones

which provide a sandboxed application execution
environment. A customized embedded Linux system
interacts with the phone hardware and an off processor
radio. The Binder middleware and the application API runs
on the top of Linux. Hence to simplify, an applications only
interface to the phone is through these API’s. Each
application is executed within a Dalvik Virtual Machine
(DVM) running under UNIX uid[10]. The phone comes
pre-installed with a selection of system applications like
phone dialer, address book. Applications interact with each
other and the phone through different form of IPC (inter
process communication).

.
B. Securable IPC mechanism

 Activity
An Activity is, generally, the code for a single,

user-focused task. It usually includes displaying a UI to the
user. Typically, one of the application’s activities is the
entry point to an application. Intents are used to specify as
Activity, and this may be done ambiguously to allow the
user to configure their preferred handler.

 Broadcasts

Broadcasts provide a way to send messages between
applications, for example, alerting listeners to the passage of
time, an incoming message, or other data. When sending a
broadcast as application puts the message to be sent into
intent. The application can specify which Broadcasts they
care about in terms of the intents they wish to receive by
specifying an Intent Filter. Broadcast is instantiated when an
IPC mechanism known as an Intent is issued by the
operating system or another application. An application may
register a receiver for the low battery message, for example
and change its behavior based on that information.

 Services
Services are background processes that toil away quietly

in the background. It can run in its own process, or in the
context of another application’s process. Other components
‘bind’ to a service and invoke methods on it via a remote
procedure calls. A service might play music, even when the
user quits the media –selection UI, the user probably still
intends for the music to keep playing and others handle
incoming instant messages, file transfers or email. Services
can be started using intents.

 Content Providers
Content Providers provide a way to efficiently share

relational data between processes securely. They are based
on SQL and should be used carefully.

 Figure 1. Android’s IPC Mecahnism[17]

Content Providers can be secured with Android
permissions, and used to share data between processes, like
files might be on traditional UNIX like systems.

 Binder
Binder provides a highly efficient communication

mechanism on Android. It is implemented in the kernel, and
you can easily build RPC interfaces on top of it using the
Android Interface Definition Language (AIDL). Binder is
commonly used to bridge Java and native code running in
separate processes.

The key security features of android to achieve the
objectives like protection of user data, protection of system
resources including the network and provide application
isolation are as follows:

1. Robust security at the OS level through the Linux
kernel.

2. Mandatory application sandbox for all applications.
3. Secure inter process communication.
4. Application signing.
5. Application defined and user granted permissions.

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-2, Issue-5, September-2014

44

 Figure 2. Android’s APK File [16]

C. Installation process of Android Application
An Android Application is stored in an APK file. In order

to run the app one needs to install the required APK file. An
APK file consists of java class files and the libraries as
shown in fig. At the time of application installation, the list
of permissions [11] is asked to the user. If the user agrees to
the listed permissions and clicks install then the installation
takes place. There are 2 types of applications, one being
from the Android Google Play store and others are third
party applications. If the application to be installed is from
third party then user has to enable the installation from
unknown resources. The process is shown in fig

 Figure 3. Android’s APK installation process

System server is the core of Android system and it starts

as soon as Dalvik is initialized and running. The main
Android services such as the activity manager, package
manager, and alarm manager are running in their separate
threads but as parts of system server process. Package
Manager is an API that actually manages application install,
uninstall and upgrade. When an APK is installed, Package
Manager Parse the package (APK) file and displays
confirmation. When the user presses OK button, Package
Manager calls the method named “installPackage” with
these four parameters namely uri, installFlags , observer,
installPackageName. Package manager starts one service
named “package” which actually carries out the processing
of this service. Package manager Service runs in the system
service process and installs daemon (installd) runs as a
native process. Both start at the same boot time.

Package installer
It is a default application for Android to interactively

install a normal package. Package installer provide user
interface to manage applications/ packages. Package
Installer calls InstallAppProgress activity to receive
instructions from the user. InstallAppProgress will ask
Package Manager Service to install package via installd.
Some of the main tasks of Package manager Service are add
a package to the queue for the installation process,
determine the appropriate location of the package
installation, determine installation Install/Update new, Copy
the apk to a given directory, determine the UID of the app,
request the installed daemon process, create the application
directory and set permissions, extraction of dex code to the
cache directory.

 Figure 4. Working of Package Manager [3]

 According to [2] the android OS only reveals only the

permissions to the user. It also checks from its Google play
store database whether the app is authentic or not. But the
issue here is, user cannot judge just by displaying the
permissions whether the app is malicious or not. Hence
leads to unknowingly spreading the malware. Hence there is
a need for solution at the application layer.

D. Solutions for preventing Malwares
Currently according to [6] there are many antivirus

available in the market to scan the APK for malwares, but
mobiles are among the resource constrained devices hence
the applications need to have limited processing, low
memory and operate on low power mode due to finite energy
supply [12].

The major limitation in using anti-virus application is it
scans the system for malwares after the installation of the
Apk file. Hence it fails in case of malwares which spreads
and attacks the working of anti-virus application itself.

II. LIMITATION OF ANTI-VIRUS

Mobiles are among the resource constrained devices
hence the applications need to have limited processing, low
memory and operate on low power mode due to finite energy
supply. According to [7] the antivirus software majorly
consumes the battery which reduces the performance of the

System Level Security Solution for Android

45

smart phones. Android Anti-Virus software is also limited
drastically by file system-based sandboxing. It cannot scan
the file system on demand or monitor file system changes.
Most importantly, this includes the working directories of
the other apps. Anti-Virus software is thus oblivious to any
files other apps might download or create at runtime,
including malicious code [6].Package Database in android
OS keeps track of installed apps in a package database [13].
This database contains the code path where an apps package
file with its byte code is stored, the apps package name, its
UID and other entries. In contrast to many other android OS
resources, the package database is publically readable.
Access Package files themselves are also readable by any
app. This in combination with package database being
readable provides access to package files. Antivirus
software can acquire the path to package files from the
package database and then open package files directly. This
way, common antivirus detection techniques can at least be
applied to the static app installation package file.
Antivirus basically works on 2 methods that are heuristic
and signature based [6]. Heuristic method is to analyze the
suspicious files characteristics and behavior to determine if
it is indeed malware, where signature based method identify
known malware saved on the database. If the virus then
reappears, it can be identified as such using the signature
and assigned to a specific virus. According to [6], Android
antivirus cannot deploy recognition techniques based on the
heuristics to arbitrary file system objects, and especially not
to apps working directories contents. Thus, dynamically
downloaded code will not be found. This dynamically
fetched code may also be the only component which openly
demonstrates malicious behavior, keeping the app which
downloaded the malicious payload free of any suspicion and
detection.

So Major hindrance for antivirus software is,
1. The android OS itself uses unique user IDs to create each

Android process which is the concept of sandboxed
applications. Hence it’s unable to directly access the file
system and its contents.

2. When a virus tries to modify core system files or affect
other vital parts of the android device, existing antivirus
software can’t recognize that because it isn’t able to
access the root of the system.

In other words, rooting android could be the only solution to
androids security problems which is not recommended
due to other security issues.

III. PROPOSED MODEL

Android’s source code is released by Google under the
Apache license, this permissive licensing allows the
software to be freely modified by users. Android device
owners are not given root access to the operating system and
sensitive partitions such as /system is read-only. However,
root access can be obtained by exploiting security flaws in
android, which is used frequently by the open-source
community to enhance the capabilities of their devices.

In our proposed system we are trying to develop a third
party application which requires system permission to hook
the package manager. In Android OS the package manager

has defined some protection levels for the permissions,
which are grouped on
1. Regular, a lower-risk permission that gives requesting

access to isolated application level features with minimal
risk to other applications the system or the user. The
system automatically grants this type of permission to a
requesting application at installation, without asking for
the user’s explicit approval.

2. Dangerous, a higher-risk permission that would give a
requesting application access to private user data or
control over the device that can negatively impact the
user. Because this type of permission introduces potential
risk, the system may not automatically grant it to the
requesting application. For example any dangerous
permission requested by an application may be displayed
to the user and require confirmation before proceeding or
some other approach may be taken to avoid the user
automatically allowing the use of such facilities.

3. Signed is a permission that the system grants only if the
requesting application is signed with the same certificate
as the application that declared the permission. If the
certificates match, the system automatically grants the
permission without notifying the user or asking for the
user’s explicit approval.

4. Signatures or System is a permission that the system
grants only to applications that are in the android system
image or that are signed with the same certificate as the
application that declared the permission. Please avoid
using this option , as the signature protection level should
be sufficient for most needs and works regardless of
exactly where applications are installed. This permission
is used for certain special situations where multiple
vendors have applications built into a system image and
need to share specific features explicitly because they are
being built together.

According to [8][9], Permissions in the first two groups
can be granted to any application, where as the last two can
be obtained only by applications which are system
preinstalled in the device’s firmware or which are signed
with the platform key, i.e. the same key that was used to sign
the firmware.

Fact is Package Manager does not grant system
permissions to hook until and unless the android system is
root. It gives the privileges to modify the software code on
the device or install other software that the manufacturer
would not normally allow to. Hence for good mobile
security reasons they don’t want users to make
modifications to the phones that could result accident
beyond repair.
Android users are restoring to them because of the powerful
perks they provide, such as:
1. Full customization for just about every theme/graphic
2. Download of any app, regardless of the app store they are

posted on
3. Extended battery life and added performance.
4. Updates to the latest version of Android if your device is

outdated and no longer updated by the manufacturer.

To secure the Android operating system from the
malware attacks, the APK should be scanned before it gets

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347-5552, Volume-2, Issue-5, September-2014

46

installed on the android operating system. Hence to achieve
this, we need to customize the operating system as the
development needs to be in root. Hence the proposed model
requires cooking the device firmware and adding a custom
package verification agent into the firmware. Next we need
to add an activity into that agent on package manager which
will generate the checksum using SHA algorithm [14] and
checks across the database for malicious signature. Finally,
if the signature is found in the database then the installation
process is blocked and if the application is without any
malwares the installation process is carried out by giving
result to the package manager. The block diagram depicts
the flow of the proposed model.

 Figure 5. Block diagram of Proposed Model

About the Serverside dependencies the system works on a
thin client totally and has very few serverside dependencies.
At the server side the database is developed by applying
SHA algorithm for the known malwars. The application
needs to get updated with this database at a regular time
interval. The objective of the above model is to
1. Secure the Android OS from malware before apk file

installation takes place.
2. Block the installation process if the app is malicious.
3. Improve the performance of the resource containt

device by triggering the application only at the time of
installation of the APK file.

IV IMPLEMENTATION AND TESTING

The above model was tested for some of the latest malwares
families. For this purpose the following test cases were
designed.

Test case 1: Detection of unaltered malware: In this test
case the malware application package files are pushed on the
SDcard and checked. The above model was tested for the
latest malwares families which successfully detects the
known malwares.

Test case 2: Detection of altered malware: In this test case
the malware application package files are decompiled and
their package and class names were renamed but no code is

altered.

Test case 3: Dynamic downloading: In this test case an
app is directly allowed to download and checked for other
dynamic infection routines.

Test case 4: Advanced and unknown threats: In this test
case some of the latest malicious files were tried to test
across the database signatures.

The results show that the model is significantly detecting the
malwares except for some samples in Test case 2 as
application package files were decompiled and their
package and class names were renamed which resulted in
new SHA-1 checksum, which was not present in the
signature database. Regarding the Test case 4, the result was
failed because latest malicious file signatures were not
updated.Overall out of 26 samples tested 23 were detected
for the 3 test cases and zero were detected for the test case
4.The following fig.7 shows the screen shots of the actual
tests conducted and the results are shown in the table below.

Figure 6: Screenshot of malware detected

This model hence trying to include more
security at the operating system level.

System Level Security Solution for Android

47

IV. CONCLUSION

Due to androids secured IPC mechanism antivirus software
is not very effective on android platform. However there is
significant increase in the growth of malwares, hence an
effective malware detection technique above the android
operating system adds one more layer of security. Our
contribution to this area is detecting the malware on the
android system before it gets installed, due to this detection
technique the possibility of spreading the malware after
installation is totally ruled out. Traditional signature based
detection is impemented in this model and we look forward
to some more advanced detection techniques which could
work hand in hand with the current sandbox based file
system limitations. This process does not toil in the
background as it triggers only on arrival of apk hence less
amount of power is consumed which is very important
parameter to increase the efficiency of a mobile device.
In a nutshell, an attempt for mitigating the malware attacks
with achieving efficiency on the widely used operating
system, android is done. Results show that we were able to
detect malware apks and prevent them from getting
installed. Testing this model across many more malware
samples will be part of our future work.

REFERENCES
[1] Fraunhofer AISEC, Android OS Security: Risks and Limitations, A
Practical Evaluation Version 1.0, by: Rafael Fedler, Christian Banse,
Christoph Kraub and Volker Fusenig.
[2] University of California ,Berkeley, Android Permissions Demystied,
by: CCS11, October 1721, 2011, Chicago, Illionois USA Adrienne Porter
Felt, Erika Chin, Steve Hanna, Dawn Song, David Wagner apf, emc, sch,
dawnsong, daw@ cs.berkeley.edu
[3] Package Manager In Depth, In Depth: Android Package Manager and
Package installer,
http://java.dzone.com/articles/depth-android-package-manager
[4] Mobile Security, Identifying the Mobile Security Stack,
http://blog.veracode.com/2011/03/identifying-the-mobile-security-stack/

[5] Reference Architecture, Mobile Security Reference Architecture, by
CIO Council and US Department of HomeLAnd Security May 2013,
https://cio.gov/wpcontent/uploads/2013/05/Mobile-Security-
Reference-Architecture.pdf
[6] 2013 IEEE, An AntiVirus API for Android Malware Recognition, by
Rafael Fedler, Marcel Kulicke and Julian AISEC Garching near Munich,
Germany rafel,kuliche.schuette@aisec.fraunhofer.de
http://ieeexplore.ieee.org(PISNumber3A6703677)
[7] Review August 2013, AV-Comparatives Mobile Security,
http://www.av-comparatives.org/wp-content/uploads/2013/08/avc_mob_
201308_en.pdf
[8] Permission, Android Development Guide,
http://developer.android.com/guide/topics/security/permissionas.html
[9] Permission Element, Android development Guide,
http://developer.android.com/guide/topics/manifest/permission-element.h
tml
[10] Systems Internet Infrastructure Security Laboratory. Department of
Computer Science and Engineering. The Pennsylvania State University, A
Study of Android Application Security, by William Enck, Damien Octeau,
Patrick McDaniel and Swarat Chaudhari
http://dl.acm.org/citation.cfm?id=2028088
[11] Symposium on Usable Privacy and Security (SOUPS) 2012, July
11-13,2012, Washington, DC, USA, Android Permissions: User Attention,
Comprehension and Behavior by: Adrienne Porter Flet, Elizabeth Hay,
Serge Egelman, Ariel Haneyy, Erika Chin, David Wagner Computer
Science Department School of Information. University of California,
Berkeley
[12] Smart Devices, Ubiquitous Computing Smart Devices, Environments
and Interactions by: Stefan Poslad Queen Mary, University of London, UK
[13] J.Burns. Exploraory Android Surgery (talk slides), Black Hat
Technical Security Conference USA, May 2009.
http://www.blackhat.com/html/bhusa-09/bhusa-09-archives.html
[14] NIST, Descriptions of SHA-1

http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/SHA1.pdf
[15] Gartner research Smartphone sales operating system
http://www.gartner.com/newsroom/id/2665715
[16] Android APK Architecture,
http://devmaze.wordpress.com/2011/05/22/android-application-android-l
ibraries-and-jar-libraries/
[17] Systems and Internet Infrastructure security, Pennsylvania State
University, Understanding Android’s security framework by: William
Enck, Patrick McDaniel

