Volume- 4
Issue- 2
Year- 2016
Article Tools: Print the Abstract | Indexing metadata | How to cite item | Email this article | Post a Comment
M. A. Sohaly , Ahlam H.Tolba
In this paper, the random Euler method (REM) is used in solving system of random matrix differential initial value problems of first order. The existence and uniqueness theorem was proved. The REM is presented and the conditions for the mean square (m.s.) convergence are established. Numerical examples show that REM gives good results where some statistical properties of the numerical solutions are computed through numerical case studies.
[1] Barron, R., Ayala, G.: El m´etodo de yuxtaposici´on de dominios en la soluci´on num´erica de ecuaciones diferenciales estoc´asticas. In: Proc. Metodos Num´ericos en Ingenier´Ä±a y Ciencias Aplicadas (CIMNE), Monterrey, Mexico, pp. 267–276 (2002).
[2] Braumann, C.A.: Variable effort harvesting models in random environments: generalization to density-dependent noise intensities. Math. Biosci. 177-178, 229–245 (2002)
[3] Chil`es, J., Delfiner, P.: Geostatistics. Modelling Spatial Uncertainty. John Wiley, New York (1999)
[4]Keller, J.B.: Wave propagation in random media. In: Proc. Symp. Appl. Math., vol. 13, pp. 227–246. Amer. Math. Soc., Providence (1962)
[5] Keller, J.B.: Stochastic equations and wave propagation in random media. In: Proc. Symp. Appl. Math., New York, vol. 16, pp. 145–170. Amer. Math. Soc., Providence (1964)
[6]Talay, D.: Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastics Analysis and Applications 8(4), 483–509 (1990)
[7] T.T. Soong (1973). Random Differential Equations in Science and Engineering, Academic Press, New York.
[8] J.C. Cort´es, L. J´odar, R.J.Villanueva, L. Villafuerte (2010). Mean Square Convergent Numerical Mehods for Nonlinear Random Differential Equations, Comput.Math. Appl. 59, 1–21.
[9] Golub, G., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, Baltimore (1989).
[10] Magdy, A. El-Tawil and Mohammed A.sohaly, Mean Square Numerical Methods for initial value random differential equations, open Journal of Discrete Mathematics OJDM, 2011(1), 66–84.
[11] ] M. El-Sohaly, Mean square convergent three and five points finite difference scheme for stochastic parabolic partial differential equations, Electronic Journal of Mathematical Analysis and Applications 2 (2014) 66–84
Department of Mathematics, Faculty of Science, Mansoura University, Egypt
No. of Downloads: 8 | No. of Views: 1160
Michael M. Silaev.
September 2017 - Vol 5, Issue 5
M.A. Sohaly, M.T. Yassen, I.M. Elbaz.
March 2017 - Vol 5, Issue 2
M.MuthuKumaran, S.Vigneshwar.
November 2016 - Vol 4, Issue 6