Volume- 12
Issue- 2
Year- 2024
DOI: 10.55524/ijircst.2024.12.2.13 | DOI URL: https://doi.org/10.55524/ijircst.2024.12.2.13 Crossref
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)
Article Tools: Print the Abstract | Indexing metadata | How to cite item | Email this article | Post a Comment
Xin Chen , Yuxiang Hu, Ting Xu, Haowei Yang, Tong Wu
As artificial intelligence (AI) theory becomes more sophisticated and its utilization spreads across daily life, education, and professional settings, the adoption of AI for medical diagnostic and service purposes stands as a logical progression in the evolution of medical technologies. This document outlines a novel approach to detecting cancer cell targets using a deep learning-based system, marking a critical step towards integrating AI into cancer diagnostics. The process of detecting cancer cell targets entails the localization of cell types within images of cells. By capitalizing on the strengths of the YOLOv5 model—a deep learning-driven, end-to-end, real-time object detection framework known for its efficiency, superior performance, adaptability, and user-friendly PyTorch integration—this research presents an enhanced YOLOv5 model incorporating both a feature pyramid network and the original YOLOv5 architecture. The ultimate aim is to facilitate precise detection of targets in cancer cell images. The experimental data demonstrate the system's negligible error rate in detection, swift processing capabilities, and exceptional reliability.
Department of Computer Science, Cornell University, Ithaca, USA
No. of Downloads: 27 | No. of Views: 759
Wenxuan Zheng, Mingxuan Yang, Decheng Huang, Meizhizi Jin.
November 2024 - Vol 12, Issue 6
Siti Nur.
November 2024 - Vol 12, Issue 6
Ahmet Egesoy, Gulce Leylek.
November 2024 - Vol 12, Issue 6